期刊文献+

基于LMS自适应时延估计法的微地形测距系统研究 被引量:2

Study on the ultrasonic distance measurement system for seabed coblat-crusts microtopography based on LMS adaptive filter
下载PDF
导出
摘要 根据单波束超声波测距原理,向模拟海底钴结壳微地形的水池表面发射超声波,应用自适应滤波方法可以估计超声回波信号的时延,使最小均方误差(LMS)后的回波信号与参考信号之间方差达到最小值,此刻的延时量就是渡越时间t,从而求出探头与目标之间的距离。通过计算机仿真和试验结果表明,将最小均方误差自适应时延法应用于海底微地形高程数据的测量,获得测距精度高,能够适用于海底微地形的探测。 According to the principle of single-beam measurement, using ultrasonic transducer ultrasound wave was launched to the seabed floor. Ultrasonic transducer sent ultrasonic signal as a reference signal, the echo signal was delayed several times. Through continuous square (LMS) error was gained between the reference gation time. The product of delay time and ultrasonic adjustment of the quantity of delay time, the minimum mean signal and the echo signal. The delay time equals wave velocitv is the distance between uhrasonic transducer and seabed floor. Computer simulation and test results indicated that using minimum mean square error method to measure seabed microtopography, the high precision can be obtained. It can be applied to the seabed microtopography survey.
出处 《中国工程科学》 2009年第8期79-82,共4页 Strategic Study of CAE
基金 国家自然科学基金资助项目(50474052)
关键词 海底钴结壳 微地形测距 LMS 单波束测距 自适应滤波法 deep-sea coblat-crusts microtopography LMS single-beam measurement adaptive fihering
  • 相关文献

参考文献10

二级参考文献31

共引文献604

同被引文献23

  • 1马金明.TDOA参数估计算法[J].北京邮电大学学报,2007,30(1):96-99. 被引量:7
  • 2Nivesrangsan P, Steel J A, Reuben R L. Source loca- tion of acoustic emission in diesel engines [ J ]. Mechan- ical Systems and Signal Processing, 2007, 21 (2) : 1103 - 1114. 被引量:1
  • 3Yegananarayana B, Mahadeva P S, Ramani D, et al. Pro- cessing of reverberant speech for time-delay estimation [ J]. IEEE Transactions on Speech and Audio Process- ing, 2005, 13(6) : 1110- 1118. 被引量:1
  • 4Benesty J. Adaptive eigenvalue decomposition algorithm for passive acoustic source localization [ J ]. Acoustic Society of America, 2000, 107 ( 1 ) : 384 - 391. 被引量:1
  • 5Dvorkind T G, Gannot S. Time difference of arrival esti- mation of speech source in a noisy and reverberant envi- ronment[J]. Signal Processing, 2005, 85 ( 1 ) : 177 - 204. 被引量:1
  • 6Shen J L, Hung J W, Lee L S. Robust entropy-based endpoint detection for speech recognition in noisy envi- ronments [ J ]. ICSLP, 1998, 48 (3) : 1032 - 1037. 被引量:1
  • 7Nguyen L H, LeNgoc T, Ko C C. RLS-based joint es- timation and tracking of channel response, sampling, and carder frequency offsets for OFDM[ J ]. IEEE Transac- tions on Broadcasting, 2009, 55 ( 1 ) : 84 - 94. 被引量:1
  • 8Irusta U, Ruiz de G S, Ruiz J, et al. A variable step size LMS algorithm for the suppression of the CPR arti- fact from a VF signal [ J ]. Computers in Cardiology, 2005, 48(4) : 179-182. 被引量:1
  • 9Givens M. Enhanced convergence normalized LMS al- gorithm[ J]. IEEE Signal Processing Magazine, 2009, 26(3) : 81 -95. 被引量:1
  • 10Levy Bernard C. An unbiased explicit adaptive gain and time-delay estimation algorithm [C ]//Conference Record-Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA, 2009:1345 - 1347. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部