摘要
设X为一致光滑Banach空间,设C是X的闭子集,A是m-增生算子,f:C→C是一弱压缩映射,引入关于m-增生算子的弱压缩复合迭代序列,证明了该序列{xn}强收敛于A的一个零点,推广了一些迭代的相关结果.
Let X is a uniformly smooth Banach space, C is a closed subset of X, and A is an m-accretive operator with a zero. We' ll consider the weakly contractive composite iterative method which generates the sequence {xn}. yn=(1-αn)x0+αnJrnxn, x(n+1)=βnf(xn)+(1-βn)Jrn, yn, and prove it strongly converges to a zero point of A,where {αn},{βn} ,{rn} satisfy certain conditions , f: C→C is a Ф-weakly contractive mapping.
出处
《南阳师范学院学报》
CAS
2009年第6期1-4,共4页
Journal of Nanyang Normal University
基金
国家自然科学基金资助项目(10771141)
关键词
一致光滑BANACH空间
M-增生算子
弱压缩
算子零点
uniformly smooth Banach spaces
m-accretive operator
weakly contractive mapping
zero points of operator