期刊文献+

泉溪大桥通航尺度与通航条件研究 被引量:1

Study of Navigation Conditions of Quanxi Bridge
下载PDF
导出
摘要 泉溪大桥于琼江、涪江交汇口以上约75 m处跨越琼江,桥位河段船舶通航条件复杂。文中建立了工程河段贴体正交坐标系下的平面二维水流数学模型,并利用该模型进行拟建大桥通航论证研究;分析了拟建泉溪大桥的通航净空要求及该河段的通航条件要求。 Quanxi Bridge spans Qiongjiang river upper the river mouth about 75m, where navigation conditions are complicated. Based on the site investigation a two-dimensional horizontal numerical mode in orthogonal body-fitted coordinate for flow was established to study the navigable dimension of Quanxi Bridge. The results of calculation showed that the bridge's navigable dimension is up to the mustard.
出处 《交通科技》 2009年第B07期10-12,共3页 Transportation Science & Technology
关键词 泉溪大桥 通航尺度 平面二维数学模型 bridge navigable dimension two-dimensional horizontal numerical mode
  • 相关文献

参考文献3

二级参考文献20

  • 1EF Tom. Riemann solvers and numerial methods for fluid dynamics[M]. Berlin: Springer, 1999. 被引量:1
  • 2Marshall E, Mendez R. Computational aspects of the random choice method for shallow water equations[J]. J Comput Phys, 1981, 39:1 - 21. 被引量:1
  • 3EF Toro. Shock-capturing methods for flee-surface shallow flows[M]. Chichester: John Wiley & Sons, 2001.15- 165. 被引量:1
  • 4Glaister P. Approximate riemann solutions of the shallow water equations[J]. Journal of Hydraulic Research, 1988, 26(3): 293- 306. 被引量:1
  • 5Alcrudo F, Garcia-navarm P, Jose-Maria Saviron. Flux difference splitting for 1D open channel flow equations[J]. Int J Numer Meth Flu0ids,1992, 14: 1009-1018. 被引量:1
  • 6EF Tom. Riemann problems and the WAF method for solving the two-dimensioanl shallow water equations[J]. Phil Trans R Soc, Lond A,1992, 338 : 43 - 67. 被引量:1
  • 7Fraccamllo L, EF Toro. Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problem[J].Journal of Hydraulic Research, 1995, 33(6) : 843 - 863. 被引量:1
  • 8Alcrudo F, Garcia-Navarro P. A high-resolution Godunov-type scheme in finite volumes for 2-D shallow-water equations[J]. Int J Numer Meth Fluids, 1993, 16: 489-505. 被引量:1
  • 9Hui WH, Kudriakov S. Computationa of the shallow water equations using the unified coordinates[J]. SIAM J Sci Comput, 2002, 23:1615-1 654. 被引量:1
  • 10Fujihara M, Borthwick AGL. Godunov-Type Solution of Curvilinear Shallow-Water Equations[J]. Journal of Hydraulic Engineering, 2000,126(11) : 827- 836. 被引量:1

共引文献62

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部