期刊文献+

基于文本特征的文本水印算法 被引量:8

Text watermarking based on text feature
下载PDF
导出
摘要 基于格式的文本水印算法对格式攻击的鲁棒性比较差,而基于自然语言的文本水印算法相对难以实现,因此提出一种基于词频的文本零水印算法。对文本内容进行分词并计算每个分词的词频,根据设定的词频阈值范围依次提取分词序列作为文本特征,将文本特征、水印和密钥注册于版权保护(IPR)信息库。水印检测可实现盲检测。将该算法用于含有图像等多媒体信息的中英文文档,试验结果证明,该算法对剪切、粘贴、内容顺序颠倒等攻击有较强的鲁棒性。 The format-based text watermarking algorithm has poor robustness against format attacks, and the naturallanguage-based text watermarking algorithm is difficult to realize. A text zero-watermarking based on word frequency was proposed. Words were segmented and word frequency was computed. The words were sequentially extracted in threshold range of word frequency to be text feature. Text feature, watermark and secret key were registered to the information database. Watermarking detection was blind. Both Chinese and English documents with multimedia information were tested in the experiments. Experimental resuhs demonstrate that the technique has good robustness against attacks, such as cutting, pasting and reversing.
出处 《计算机应用》 CSCD 北大核心 2009年第9期2348-2350,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(60502027)
关键词 文本水印 文本特征 特征提取 词频 分词 text watermarking text feature feature extraction word frequency word segmentation
  • 相关文献

参考文献11

  • 1BRASSIL J T, LOW S, MAXEMCHUK N F. Copyright protection for the electronic distribution of text documents [ J]. Proceedings of the IEEE, 1999, 87(7): 1181 -1196. 被引量:1
  • 2ATALLAH M J, RASKIN V, HEMPELMANN C F, et al. Natural language watermarking and tamperproofing [ C]//Proceedings of the 5th International Workshop on Information Hiding. London: Springer-Verlag, 2002:196-212. 被引量:1
  • 3ATALLAH M J, RASKIN V, CROGAN M, et al. Natural language watermarking: Design, analysis, and a proof-of-concept implementation [ C]//Proceedings of the 4th Information Hiding Workshop. Pittsburgh, PA: [ s. n. ], 2001:185 - 199. 被引量:1
  • 4温泉,孙锬锋,王树勋.零水印的概念与应用[J].电子学报,2003,31(2):214-216. 被引量:283
  • 5苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 6SEBASTIANI F. Machine learning in automated text categorization [J]. ACM Computing Surveys, 2002, 34(1) : 1 -47. 被引量:1
  • 7LEWIS D D. Feature selection and feature extraction for text categorization [ C]// Proceedings of the Workshop on Speech and Natural Language. New York: [s.n.], 1992: 212-217. 被引量:1
  • 8马玉春,宋瀚涛.Web中文文本分词技术研究[J].计算机应用,2004,24(4):134-135. 被引量:39
  • 9吴胜远.一种汉语分词方法[J].计算机研究与发展,1996,33(4):306-311. 被引量:49
  • 10MONGE A E, ELKAN C P. The field-matching problem: algorithm and applications [ C]// Proceedings of the 2th Internet Conference on Knowledge Discovery and Data Mining. Menlo Park, CA, AAAI Press, 1996:267-270. 被引量:1

二级参考文献19

  • 1王建会,王洪伟,申展,胡运发.一种实用高效的文本分类算法[J].计算机研究与发展,2005,42(1):85-93. 被引量:20
  • 2李荣陆,王建会,陈晓云,陶晓鹏,胡运发.使用最大熵模型进行中文文本分类[J].计算机研究与发展,2005,42(1):94-101. 被引量:95
  • 3.中国新闻社[EB/OL].http://www.chinanews.com.cn/,2003-10-01. 被引量:1
  • 4I J Cox,Joe Kilian,F Thomson.Secure Spread Spectrum.Watermarking for Multimedia[J].IEEE Transactions on Image Processing,1997,6(12):1673-1687. 被引量:1
  • 5Mauro Bami, Franco Bartolini, Alessandro Piva. Improved Wavelet-Based Watermarking Through Pixel-Wise Masking[ J ]. IEEE Transactions on Image Processing,2001,10(5):783- 791. 被引量:1
  • 6R G Van Schyndel, A Z Tirkel, C F Osborne. A digital watermark[ A].in Proc. IEEE Int. Conf. Image Processing[ C]. USA: IEEE, 1994. 被引量:1
  • 7Srdjan Stankovic, Igor Djurovic, Ioannis Pitas. Watermarking in the space/spatial-frequency domain using two-dimensional radon-wigner distribution[J]. IEEE Transactions on Image Processing,2001,10(4):650 - 658. 被引量:1
  • 8Watson A B. DCT quantization matrices visually optimized for individual images[ A]. In: Proc. of SPIE: Human Vision, Visual Processing and Digital Display IV[ C ]. Washington: SPIE, 1993. 被引量:1
  • 9PIDILCHUK CI, ZENG W. Image-adaptive watermarking using visual models[J]. IEEE Trans Selected Areas in Communications, 1998, 16(4) ,575 - 539. 被引量:1
  • 10关英春,中文信息学报,1996年,1期 被引量:1

共引文献751

同被引文献106

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部