期刊文献+

均值结构模型在抑郁症病例-对照临床研究中的应用 被引量:2

Mean Structure Model and its Application in Depression Case-control Studies
下载PDF
导出
摘要 目的探讨如何利用均值结构模型实现潜变量数据的分组比较。方法结合抑郁症病例-对照临床研究量表数据,利用LISREL软件实现参数估计,并以Δχ2(Δd)、RMSEA、NNFI、CFI等拟合优度指标评价拟合效果。结果社会支持量表的验证性因子分析模型拟合优度不理想,但其均值结构模型拟合效果有所改善;特质应对方式问卷模型拟合优度检验比较理想。结论采用均值结构模型进行抑郁症病例-对照分组比较,不仅获得量表结构效度及关联性结果,而且得到病例组与对照组潜变量均值的差异,结果符合专业解释。 Objective Discussed the method of multi - group comparison with mean structure equation models for latent variable data. Methods Depression case-control data were analyzed and using LISREL to estimate parameter,△x^2 ( △d), RMSEA, NNFI, CFI were used as fitting goodness indicator. Results The goodness of fit about CFA mean strueture model of social support scale is not very good, but mean structure models obtained a more meaningful measure of goodness of fit. The goodness of fit about mean structure model for TCSQ is perfect. Conclusion Mean structural model not only obtained the results of structural validity and relevancy, but also obtained the mean differences of latent variables.
出处 《中国卫生统计》 CSCD 北大核心 2009年第4期352-354,共3页 Chinese Journal of Health Statistics
基金 山西省自然科学基金资助项目 山西省创新拔尖人才基金项目
关键词 均值结构模型 潜变量 抑郁症 病例-对照研究 Mean structure model Latent variable Depression Case-control study
  • 相关文献

参考文献6

  • 1廖福挺著,高勇译.分组比较的统计分析.重庆大学出版社,2007:97-124. 被引量:2
  • 2侯杰泰等著..结构方程模型及其应用[M].北京:教育科学出版社,2004:407.
  • 3Vandenberg. Toward a further understanding of and improvement in measurement invariance methods and procedures. Organizational Research Methods,2002,5(2) :139-158. 被引量:1
  • 4Joreskog KG, Sorbom D. LISREL 8: User's Reference Guide Scientific Software International, Inc. 1999-2001. 被引量:1
  • 5Yu SC, Yu MN. Comparison of interent-based questionnaries in Taiwan using multisample invariance approach. Cyber Psychology & Behavior, 2007,10(4) :501-507. 被引量:1
  • 6Lau PWC, Cheung MWL, Ransdell LB. A structural equation model of the relationship between body perception and self-esteem : Global physical self-concept as the mediator. Psychology of Sport and Exercise, 2008,9: 493 -509. 被引量:1

共引文献1

同被引文献184

引证文献2

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部