摘要
以解析法为基础,采用新的精确计算方法求解线性系统的状态方程.该方法属于一种2N类算法,它是把每一时间步长再进一步细分为2N个精细步长,然后在精细步长内利用泰勒展开式求解矩阵函数.与传统的Runge-Kuta方法比较,这种方法兼有解析法与数值法的优点,稳定性好,可以采用较大的时间步长以提高计算效率.
Anew precision method, a kind of 2 N algorithm, is used for the computation of the state equations of linear system, in which the time step is adivided into 2 N precision step, then the matrix exponential function is calculated in the precision steps by using it′s Taylor series. Compared with Runge kutta method, the new method has the advantages of both analytics and numerical method, high precision and good stability. Therefore the large time step can be used to improve the calculation efficiency.
出处
《陕西师大学报(自然科学版)》
CSCD
北大核心
1998年第3期11-14,共4页
Journal of Shaanxi Normal University(Natural Science Edition)
关键词
线性系统
状态方程
计算
linear system
state equation
precision calculation