期刊文献+

基于神经网络的NURBS曲面重建 被引量:2

NURBS Surface Reconstruction Based on Neural Network
下载PDF
导出
摘要 曲面重建是CAGD中的重点研究课题,而神经网络具有很好的非线性逼近能力,文中将二者结合,给出了一种利用神经网络将三维数据点拟合为NURBS曲面的方法。提出的前馈型神经网络包含四个隐层,其中一层的激活函数为B样条基函数。由数学推导可知,该网络可以表达NURBS曲面,通过对控制顶点及其权重的学习,可以用该网络来重建NURBS曲面。权值的调整通过误差反传与梯度下降法实现。实验结果表明,文中提出的方法是可行的。 Surface reconstruction is the focus in CAGD research. Neural network has a good ability of non-linear approximation. In this paper,give a method for the NURBS surface fitting using neural network. The proposed feed- forward neural network contains four hidden layers. The activation function of one layer is the B- spine basic function. From mathematical derivation know that NURKS surface can be expressed by this network. Through the study of the control points and weights, the network can be used to NURBS surface reconstruction. Experiments show that the method is feasible.
出处 《计算机技术与发展》 2009年第9期65-68,共4页 Computer Technology and Development
基金 国家自然科学基金(60873093)
关键词 曲面重建 神经网络 NURBS曲面 surface reconstruction neural networks NURBS surface
  • 相关文献

参考文献10

二级参考文献75

  • 1曲学军,宁涛,席平.逆向工程中平面轮廓线数据的B样条曲面拟合[J].计算机工程,2004,30(10):14-15. 被引量:9
  • 2李文杰.采用三次B样条逼近断层轮廓构造封闭曲面[J].福建电脑,2005,21(7):58-60. 被引量:1
  • 3[1]Varady T, Martin R R, Cox J. Reverse engineering of geometric models--an introduction [J].Computer Aided Design, 1997, 29(4): 255~268. 被引量:1
  • 4[2]Soderkvist I. Introductory overview of surface reconstruction methods [R]. Department of Mathematics, Lulea University, Sweden, 1999. 被引量:1
  • 5[3]Pratt V. Direct least-squares fitting of algebraic surface [J]. Computer Graphics, 1987, 21(4): 145~152. 被引量:1
  • 6[4]Sclaroff S, Pentland A. Generalized implicit functions for computer graphics [J]. Computer Graphics, 1991,25(4): 247~250. 被引量:1
  • 7[5]Zhou, Kambhamettu C. Extending superquadrics with exponent functions: modeling and reconstruction [J].Graphical Models, 2001, 63: 1~20. 被引量:1
  • 8[6]Sarkar B, Menq C H. Smooth surface approximation and reverse engineering [J]. Computer Aided Design,1991, 23 (9): 623~628. 被引量:1
  • 9[7]Krishnamurhy V, Levoy M. Fitting smooth surfaces to dense polygon meshes [J]. Computer Graphics, 1996,30(4): 313~324. 被引量:1
  • 10[8]Milroy M, Bradley C, Vickers G, et al. G1 continuity of B-spline surface patches in reverse engineering [J].Computer Aided Design, 1995, 27: 471~478. 被引量:1

共引文献66

同被引文献20

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部