期刊文献+

基于Benjamin-Feir不稳定性的畸形波模拟 被引量:5

Simulation of Freak Waves Based on Benjamin-Feir Instability
下载PDF
导出
摘要 通过引入四阶非线性薛定谔方程,基于随机波列演化的Benjamin-Feir不稳定性,采用伪谱方法建立了二维深水波浪数值水槽来模拟海洋中的畸形波现象.为了验证该数值模型的有效性,计算了二维水槽中边带扰动随机波列的传播变形,通过比较数值和试验结果发现该模型可以很好地再现畸形波现象. In this paper, the four-order nonlinear Schrodinger equations and the pseudo-spectral method are introduced to develop a 2-D numerical water flume based on the Benjamin-Feir instability of random wave trains, which is adopted to simulate the freak waves in deep water. In order to verify the efficiency of the numerical water flume, the propagation distortion of random wave trains with sideband disturbances in a 2-D water flume is then simulated. The numerical results are finally compared with the test ones, showing that the proposed model simulates freak waves well.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第6期113-116,123,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(10772068) 国家"863"计划项目(2006AA05Z426)
关键词 畸形波 四阶非线性薛定谔方程 Benjamin—Feir不稳定性 伪谱方法 数值水槽 freak wave four-order nonlinear Schrodinger equation Benjamin-Feir instability pseudo-spectral method numerical water flume
  • 相关文献

参考文献12

  • 1Draper L. Freak wave [ J]. Marine Observer, 1965,35 (2) : 193-195. 被引量:1
  • 2Kharif C, Pelinovsky E. Physical mechanisms of the rogue wave phenomenon [ J ]. European Journal of Mechanics B/Fluids, 2003,22 ( 6 ) : 603- 634. 被引量:1
  • 3Pelinovsky E, Talipova T, Kharif C. Nonlinear-dispersive mechanism of the freak wave formation in shallow water [ J ]. Physica D, 2000,147 ( 1/2 ) : 83-94. 被引量:1
  • 4Benjamin T B, Feir J E. The disintegration of wave trains on deep water Part I:theory [ J ]. Journal of Flhid Mechanics, 1967,27 ( 3 ) :417-430. 被引量:1
  • 5韩涛,张庆河,庞红犁,秦崇仁.Generation and Properties of Freak Waves in A Numerical Wave Tank[J].海洋工程:英文版,2004,18(2):281-290. 被引量:3
  • 6Lake B M, Yuen H C. A note on some nonlinear water wave experiments and the comparison of data with theory [ J ]. Journal of Fluid Mechanics, 1977,83 ( 1 ) :75- 81. 被引量:1
  • 7Melville W K. The instability and breaking of deep-water waves [ J]. Journal of Fluid Mechanics, 1982,115 ( 1 ) : 165-185. 被引量:1
  • 8Dysthe K B. Note on a modification to the nonlinear Schroedinger equation for application to deep water waves [C]//Royal Society. Proceedings of the Royal Society of London Series A:Mathematical Physical and Engineering Sciences. London : Royal Society, 1979 : 105-114. 被引量:1
  • 9Lo E, Mei C C. A numerical study of water-wave modulation based on a higher-order nonlinear Schroedinger equation [ J ]. Journal of Fluid Mechanics, 1985,150 ( 3 ) : 395- 416. 被引量:1
  • 10Chiang Wen-Son. A study on modulation of nonlinear wave trains in deep water [ D ]. Taiwan : Taiwan National Cheng Kung University,2005. 被引量:1

二级参考文献27

  • 1Wang Ke ,Kang Haigui (1. State Key Laboratory of Ocean & Offshore, Department of Civil Engineering, Dalian University of Technology, Dalian 116023, China).Efficient computation method for two-dimensional nonlinear waves[J].Acta Oceanologica Sinica,2001,20(2):281-298. 被引量:3
  • 2裴玉国,张宁川,张运秋.畸形波数值模拟和定点生成[J].海洋工程,2006,24(4):20-26. 被引量:14
  • 3Adeyemo, M. D., 1968. Effect of beach slope and shoaling on wave asymmetry, Proc. 11 th Conf. on Coastal Engineering, ASCE, 145 - 172. 被引量:1
  • 4Brandini, C. and Grilli, S. , 2001. Modeling of Freak Wave Generation in a 3D-NWT, Proceedings of the 11 th International Offshore and Polar Engineering Conference, Stavanger, Norway, 3, 124- 131. 被引量:1
  • 5Chaplin, J. R. , 1996. On frequency-focusing tmidirectional waves, Inter. J. Offshore Polar Eng., 6(2) : 131 - 137. 被引量:1
  • 6Christian, K. , Efim, P. and Tatiana, T. , 2000. Freak wave generation in shallow water, J. Fluid Mech., 328( 11 ) : 801 - 807. 被引量:1
  • 7Clauss, G. F., 1999. Task-related wave groups for seakeeping tests or simulation of design storm waves, Applied Ocean Res., 21, 219- 234. 被引量:1
  • 8Contento, G., Codiglia, R. and Fabfizio, D' Este, 2001. Nonlinear effects in 2D transient nonbreaking waves in a cloud flume, Applied Ocean Res., 23, 3- 13. 被引量:1
  • 9Dean, R. G. and Dalrymple, R. N., 1991. Water Wave Mechanics for Engineers and Scientists, World Scientific. 被引量:1
  • 10Dean, R.G., 1990. Freak waves: A possible explanation, Water Wave Kinematics, Kluwer, 609 - 612. 被引量:1

共引文献9

同被引文献93

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部