期刊文献+

一种基于分工合作的粒子群优化算法 被引量:1

Particle Swarm Optimization Algorithm Based on Grouping and Cooperating
下载PDF
导出
摘要 为了提高粒子群搜索范围,防止陷入局部最优,在当今社会中团体分工合作的启发下,提出了一种新的基于分工合作的粒子群优化算法。在该算法中,将一个大的粒子群分成几个子群,按不同参数进化,在迭代过程中不断计算各个子群的平均适应度,设定一个阈值X,当任意两个子群的平均适应度之差大于该阈值时,则根据先进带动落后的合作思想,对平均适应度差的粒子群进行参数优化,实验结果表明,该算法在设定合适阈值时,扩大了搜索范围,从而提高了寻优精度。 A new particle swarm optimization algorithm is presented based on the theory of grouping and cooperating to improve the searching swarm, it is divided into several area and prevent getting optimized partially. In the algorithm , as a big subgroups, which have different evolutions. X as a threshold and calculate particle the average fitness of each subgroup in the iterative process continuously is set, when the margin of every two subgroups' fitnesses is greater than the threshold X, optimize the parameter of the subgroup whose average fitness is less according to the principle that the advanced bring the behindhand along. The experimental results demonstrate that when an appropriate threshold is set , the algorithm can expand the searching area to improve the precision of optimization.
作者 李静 吴陈
出处 《科学技术与工程》 2009年第16期4806-4808,共3页 Science Technology and Engineering
关键词 分工合作 粒子群 子群 阈值 grouping and cooperating particle swarm subgroup threshold
  • 相关文献

参考文献5

二级参考文献43

共引文献37

同被引文献11

  • 1LUND T.Simple and sensitive in situ algae fluorescence sensor basedon fibre optics[J].Microwaves,Optics and Antennas,IEE Pro-ceedings H,1984,131(1):49-53. 被引量:1
  • 2WILLIAMS D T,GREEN A E S.A new continuum-source atomic ab-sorption spectrometer[J].Review of Scientific Instruments,1994,65(11):3339-3343. 被引量:1
  • 3FERRAZZOLI P,PALOSCIA S,PAMPALONI P,et al.The potentialof multifrequency polarimetric SAR in assessing agricultural and arbo-reous biomass[J].IEEE Trans on Geoscience and RemoteSensing,1997,35(1):5-17. 被引量:1
  • 4ROBERTS D A,DENNISON P E,GARDNER M E,et al.Evaluationof the potential of Hyperion for fire danger assessment by comparisonto the airborne visible/infrared imaging spectrometer[J].IEEETrans on Geoscience and Remote Sensing,2003,41(6):1297-1310. 被引量:1
  • 5LI Hua,ZHANG Yu,WANG A.Medical image registration based on JSmeasure and niche chaotic mutation quantum-behaved particle swarmoptimization[C]//Proc of the 6th International Conference on WirelessCommunications Networking and Mobile Computing.2010:1-4. 被引量:1
  • 6WU Jia-ming,WU Yi-quan.Infrared small target image segmentationbased on niche chaotic mutation particle swarm optimization(NCPSO)[C]//Proc of the 2nd International Conference on Intelligent Human-Machine Systems and Cybernetics.2010:74-78. 被引量:1
  • 7HUANG Yu,ZHANG De-li,LI Yong-ling,et al.Economic load dis-patch using a novel niche quantum genetic algorithm for units withvalve-point effect[C]//Proc of International Conference on MachineLearning and Cybernetics.2011:1386-1390. 被引量:1
  • 8JIA Kun,WU Bing-fang,TIAN Yi-chen,et al.Spectral discriminationof opium poppy using field spectrometry[J].IEEE Trans on Geo-science and Remote Sensing,2011,49(9):3414-3422. 被引量:1
  • 9GUO Wei,FANG Guo-hua,HUANG Xian-feng.An improved chaoticartificial fish swarm algorithm and its application in optimizing cascadehydropower stations[C]//Proc of International Conference on Busi-ness Management and Electronic Information.2011:217-220. 被引量:1
  • 10REN Jian,ZHANG Ke-heng,ZHAO Jing-hu,et al.A distributed cloneselection algorithm with its application in image enhancement[C]//Proc of International Conference on Multimedia and Signal Processing.2011:171-174. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部