期刊文献+

对流扩散方程的迎风Cell-centered混合元方法

Upwind Cell-centered Mixed Methods for Convection-diffusion Problems
下载PDF
导出
摘要 讨论对流扩散方程的一种迎风Cell-centered混合元方法,在不同的矩形网格剖分下,分别用常量浓度元与常量通量元逼近原问题的解,得到了浓度与通量的一阶L2模误差估计,并通过数值算例验证了理论分析结果的正确性。 A upwind cell-centered mixed method is discussed for convectiondiffusion problems, which uses different rectangular grids called the primal and dual partitions. The concentration is cell-centered, and the flux is cocell centered. Optimal convergence results are derived in the L2 norm, which is proved to be correct according to numerical examples.
出处 《科学技术与工程》 2009年第16期4592-4596,共5页 Science Technology and Engineering
基金 国家自然科学基金(10270168 40581119) 山东省自然科学基金(Z2006A02 Y2007A14) 山东省高等学校优秀青年教师国内访问学者项目资助
关键词 对流扩散方程 迎风 集中质量 convection-diffusion problem upwind cell-centered
  • 相关文献

参考文献5

  • 1Ciarlet P G. The finite element method for elliptic problems. North- Holland, Amsterdam, 1978. 被引量:1
  • 2Chou S H, Kwak D Y, Vassilevski P S. Mixed upwinding eovolume methods on rectangular grids for convection-diffusion problems. SIAM J Sci Comput, 1999 ;21 ( 1,3 ) : 145--165. 被引量:1
  • 3Chou S H, Vassilevski P S. An upwinding cell-centered method with piecewis constant velocity over covohmes. Numer Methods Partial Differential, 1999 ; Eq15:49--62. 被引量:1
  • 4Rui H. Convergence of an upwind control-volume mixed finite element method for convectiondiffusion problems. Computing, 2007 ; 81 : 297--315. 被引量:1
  • 5Douglas J J, Ewing R E, Wheeler M F. The approximation of the pressure by a mixed method in the simulation of miscible displacement. PAIRO Anal Numer, 1983 ; 17 : 17--33. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部