期刊文献+

基于数学形态学的红外热波图像缺陷的定量分析 被引量:2

Quantitative Analysis of Infrared Thermal Image Defect Based on Mathematical Morphology
下载PDF
导出
摘要 红外热波无损检测技术是一种主动式热激励加热的红外热成像技术。在热波检测过程中,红外热成像仪所生成的图像对比度低、背景噪声高,造成缺陷判读和定量分析困难。针对红外图像存在的问题,提出了一种基于数学形态学的分水岭方法,用其对红外热波图像进行图像分割和特征提取。该方法是一种灰值分割方法,具有很强的去噪能力。试验结果表明,该方法能够很好地消除噪声干扰,并能对缺陷的位置和面积进行定量分析,具有工程应用价值。 Infrared thermal wave testing technology was a kind of infrared thermal technology which heats the sample and detects the surface temperature. The infrared thermal image which had low contrast degree and high background noise was difficult to be analyzed quantitatively by inspector. In order to solve thermal image problem, the Watershed method based on mathematicai morphology was presented. The method was an efficient gray level segmentation way which had strongly eliminated noise. Therefore, the Watershed method based on mathematical morphology which segmented defects and extracted the image feature was adopted. The result showed that the Watershed method had eliminated noise effectively, and had computed the defect locations and areas with quantitative analysis and had an engineering applied value.
出处 《无损检测》 2009年第8期596-599,共4页 Nondestructive Testing
关键词 热波检测 图像处理 数学形态学 特征提取 Thermal wave testing Image processing Mathematical morphology Feature extraction
  • 相关文献

参考文献7

二级参考文献16

  • 1袁爱娥,毛法尧.VGA/TVGA卡上真彩色图像的显示[J].计算机应用,1995,15(1):36-38. 被引量:1
  • 2Favro LD, Newaz GM, Thomas RL, et al. Progress in thermosonic crack detection for nondestructive evaluation[C]. DARPA Prognosis Bidder's Conference,USA, 2002. 25- 26. 被引量:1
  • 3Wang XUN. Pulse-echo thermal wave imaging of metals and composite[D]. Master Thesis, Wayne State Univ. (Applied Physics, 2001). 被引量:1
  • 4Sun G, Wang Xun, Feng ZJ, et al. Imaging and quantitative measurement of corrosionin painted automotive and aircraft structures[M]. Review of Progress in Quantitative Nondestructive Evaluation[C]. Chimenti:2000. 603-607. 被引量:1
  • 5Xavier PV Maldague, Patrick O Moore. Nondestructive Testing Handbook Infrared and Thermal Testing[M]. American Society for Nondestructive Testing,2001. 被引量:1
  • 6何东健.数字图象处理[M].西安:西安电子科技大学出版社,2003. 被引量:7
  • 7V Tom,TPeli,etal.Morphology-based algorithms for target detection in infrared background[ C ].SPIE Proc.,1993:2-11. 被引量:1
  • 8T Peli,V Tom,et al.Morphology-based algorithms for target detection/segmenta-tion in FLIR imagery[ C].SPIE Proc.,1993:85-94. 被引量:1
  • 9J Serra.Image analysis and mathematical morphology[M].London:Academic Press,1982. 被引量:1
  • 10Kenneth.R.Castleman.数字图像处理[M].北京:电子工业出版社,1998,423-425. 被引量:25

共引文献127

同被引文献15

  • 1郭兴旺,邵威,郭广平,刘颖韬.红外无损检测加热不均时的图像处理方法[J].北京航空航天大学学报,2005,31(11):1204-1207. 被引量:17
  • 2FAUYE M, BENEDIKTSSON J A, CHANUSSOT J,et al. Spectral and Spatial Classification of Hyperspeetral Data Using SVMs and Morphological Profiles [ J ]. IEEE Trans- actions on Geoscience and Remote Sensing, 2008, 46 (11): 3804-3814. 被引量:1
  • 3MYINT S W, LAM N S N, TYLER J. Wavelets for Ur- ban Spatial Feature Discrimination: Comparisons with Fractal, Spatial Autocorrelation, and Spatial Co-occur- rence Approaches[ J ]. Photogrammetric Engineering and Remote Sensing, 2004, 70(7) : 803-812. 被引量:1
  • 4ZHANG L, FURUMI S, MURUMATSU K, et al. Sensor- independent Analysis Method for Hyper-muhi Spectral Data Based on the Pattern Decomposition Method [ J ]. International Journal of Remote Sensing, 2006, 27 (21) : 4899-4910. 被引量:1
  • 5MEHER S K, SHANKAR B U,GHOSH A. Wavelet-fea- ture-based Classifiers for Multispectral Remote Sensing Images [J]. IEEE Transactions on Geoscience and Re- mote Sensing, 2007, 45 (7) : 1881-1886. 被引量:1
  • 6PUISSANT A, HIRSCH J, WEBER C. The Utility of Texture Analysis to Improve Perpixel Classification for High to Very High Spatial Resolution Imagery[J]. Inter- national Journal of Remote Sensing, 2005, 26 ( 4 ) : 733 -745. 被引量:1
  • 7OUMA Y O, TETUKO J,TATEISHI R. Analysis of Co- occurrence and Discrete Wavelet Transform Textures for Differentiation of Forest and Non-forest Vegetation in Very-high-resolution Optical-sensor imagery [ J ]. Inter- national Journal of Remote Sensing, 2008, 29 ( 12 ) : 3417-3456. 被引量:1
  • 8BENEDIKTSSON J A, PALMASON J A,SVEINSSON J R. Classification of Hyperspectral Data from Urban Are- as Based on Extended Morphological Profiles [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3) : 480-491. 被引量:1
  • 9EPIFANIO I, SOILLE P. Morphological Texture Fea- tures for Unsupervised and Supervised Segmentations of Natural Landscapes[J].IEEE Transactions on Geosci- ence and Remote Sensing, 2007, 45 (4) : 1074-1085. 被引量:1
  • 10SERRA J. Image Analysis and Mathematical Morphology [M]. New York: Academic Press, 1988. 被引量:1

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部