期刊文献+

基于BP神经网络梯度下降算法的7003铝合金热处理工艺优化 被引量:7

Optimization of Heat Treatment of 7003 Aluminum Alloy Based on BP Neural Networks Gradient Descent Algorithms
下载PDF
导出
摘要 为有效缩短7003铝合金热处理工艺,采用误差回转(BP)神经网络控制的方案,利用梯度下降法导出网络算法,建立热处理工艺与硬度之间BP神经网络模型。结果表明:预测值和实测值吻合较好,克服了以往单因素实验法不能正确有效反映热处理工艺和硬度之间高度非线性、时变性的弱点。该方法为有效、快捷、经济地开发有色金属和黑色金属的热处理工艺优化提供了新的思路。 In order to shorten the fussy experimental process in heat treatment of 7003 aluminum alloy, backpropagation neural network control of scheme was proposed. By using gradient descent algorithms, a network of arithmetic was induced. Between heat treatment technics and the hardness BP neural network was set up. The results indi- cate that predicted and test results were identical and thus the weakness of nonlinear and time-variation relationship beween heat treatment and hardness caused by using single-factor-experiment method was overcome. The proposed method provides a new thinking to develop heat treatment optimization of metals effectively, quickly and economically.
出处 《宇航材料工艺》 CAS CSCD 北大核心 2009年第4期6-9,57,共5页 Aerospace Materials & Technology
基金 国家自然科学基金资助项目(50771093)
关键词 误差回转神经网络 梯度下降算法 7003铝合金 热处理 Back-propagation neural networks, Gradient descent algorithms ,7003 aluminum alloy, Heat treatment
  • 相关文献

参考文献15

  • 1Chen Kanghua, Huang Lanping. Strengthening-toughening of 7xxx series high strength aluminum alloys by-heat treatment. The Chinese Journal of Nonferrous Metals, 2003 ; ( 3 ) : 484 - 489. 被引量:1
  • 2Artges C W. Changes in solid-solution composition as function of artificial aging time for aluminum alloy-7075. Journal of Materials Science Letters, 1994 ; (11 ) :776 - 778. 被引量:1
  • 3Song R G,Zhang Q Z. Heat treatment technique for 7175 aluminum alloy by an artificial neural networks and genetic algorithm. Journal of Materials Processing Technology,2001 ; 117:84 - 88. 被引量:1
  • 4唐普洪,宋仁国,柴国钟,张奇志.基于人工神经网络激光烧蚀制备PDPhSM基纳米复合薄膜聚合效率的预测[J].中国激光,2006,33(7):953-958. 被引量:7
  • 5Malinov S, Sha W, Mckeown J J. Modeling the correlation between processing parameters and properties in titanium alloys using artificial neural network. Computational Materials Science, 2001 ;21 ( 3 ) : 375 - 394. 被引量:1
  • 6周古为,郑子樵,李海.基于人工神经网络的7055铝合金二次时效性能预测[J].中国有色金属学报,2006,16(9):1583-1588. 被引量:18
  • 7Wan W S, Mabu S. Enhacing the generalization ability of neural networks through controlling the hidden layers. Applied Soft Computing,2008 ; ( 1 ) :393 -403. 被引量:1
  • 8Bilgil A, Ahun H. Investigation of flow resistance in smooth open channels using artificial neural networks. Flow Measurement and Instrumentation, 2008 ; ( 6 ) :404 - 408. 被引量:1
  • 9Pidaparti R M, Neblett. Neural network mapping of corrosion induced chemical elements degradation in aircraft aluminum. Cmc-Computers Materials & Continua,2007 ; ( 1 ) : 1 - 9. 被引量:1
  • 10Su J H, Li H J, Liu P. Aging process optimization for a copper alloy considering hardness and electrical conductivity. Computational Materials Science ,2007; (4) :697 - 701. 被引量:1

二级参考文献34

共引文献63

同被引文献93

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部