期刊文献+

算法隐含并行性的物理模型 被引量:5

Physical Model of Implicit Parallelism in Algorithms
下载PDF
导出
摘要 利用物理学原理对算法的隐含并行性进行了分析,提出算法的不确定性和高熵态是隐含并行性出现的根源,但算法的隐含并行性会导致算法结果的不确定性。智能算法中先验知识确定程序的搜索方向,隐含并行性提供了对解空间的高速并行搜索,为研究和设计智能算法提供了理论基础。提高算法的先验信息量和隐含并行能力可以得到具备较高智能水平的算法。 According to the analysis of the implicit parallelism in algorithms, a physical model of implicit parallelism in algorithm is proposed. The uncertainty and high entropy state of algorithm bring forward implicit parallelism, but the implicit parallelism of algorithms may cause the uncertainty of algorithm results. In the proposed model, the search direction in result space is decided by the apriori knowledge and the high speed parallel search ability is decided by the implicit parallelism. The implicit parallelism of genetic algorithm and simulated annealing algorithm are analyzed by this model.
作者 王鹏 常征
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2009年第4期588-591,共4页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(60702075) 中国博士后科学基金(2007410385) 四川省教育厅自然科学重点项目(07ZA014) 成都信息工程学院发展基金(KYTZ200819)的资助
关键词 先验知识 高熵态 隐含并行性 不确定性 apriori knowledge entropy high entropy state implicit parallelism, uncertainty
  • 相关文献

参考文献15

  • 1涂序彦主编..人工智能:回顾与展望[M].北京:科学出版社,2006:319.
  • 2王鹏,吕爽,聂治,等.并行计算应用及实战[M].北京:机械工业出版社,2008. 被引量:5
  • 3LI De-yi, CHEUNG D, NG V, et al. Uncertainty reasoning based on cloud models in controllers[J]. Computers arid Mathematics with Application Elsevier Science, 1998, 35 (3): 99-123. 被引量:1
  • 4BERTONI A, DORIGO M. Implicit parallelism in genetic algorithms[J]. Artificial Intelligence, 1993, 61(2): 307-314. 被引量:1
  • 5DING Li-xin, KANG Li-shan. Analysis of implicit parallelism in evolutionary algorithms: a stochastic version[C]//Fourth International Conference on Computational Intelligence and Multimedia Applications. [S.l.]: [s.n.], 2001: 172-179. 被引量:1
  • 6ALDEN H W, MICHAEL D V, JONATHAN E R. Implicit paraUelism[C]//Proceedings of GECCO 2003. [S.l.]: Springer Verlag Lecture Notes in Computer Science, 2003: 1003-1014. 被引量:1
  • 7房磊,张焕春,经亚枝.A New Fuzzy Adaptive Genetic Algorithm[J].Journal of Electronic Science and Technology of China,2005,3(1):57-59. 被引量:6
  • 8付朝江,张武.非线性动力有限元重叠区域分裂的隐式并行算法[J].计算力学学报,2006,23(6):783-788. 被引量:4
  • 9HOLLAND J H. Outline for a logical theory of adaptive systems[J]. Journal of the Association for Computing Machinery, 962(3): 297-314,. 被引量:1
  • 10HOLLAND J H. Genetic algorithm and the optimal allocations of trials[J]. SIAM Journal of Computing, 1973, 2: 88-105. 被引量:1

二级参考文献12

  • 1王菘,周坚鑫,王来.有限元方法编程(第3版)[M].北京:北京电子工业出版社.2003. 被引量:2
  • 2CHIANG K N,FULTON R E.Structural dynamics methods for concurrent processing computers[J].Comput & Struct,1990,36:1031-1037. 被引量:1
  • 3DAY D M,BHARDWAJ M K.Mechanism free domain decomposition[J].Comput Methods Appl Mech Engrg,2003,192:763-776. 被引量:1
  • 4RAMA Mohan Rao A,DATTAGURU B.Parallel finite element method for nonlinear dynamic analysis with optimized communications using sparse PCG solver[A].Proceedings of the International Conference on High Performance Computing (HPC Asia 2002)[C].2002,157-161. 被引量:1
  • 5HAJJAR J F,ABEL J F.Parallel processing for transient nonlinear structural dynamics of three dimensional framed structures using domain decomposition[J].Comput & Struct,1988,30:1237-1254. 被引量:1
  • 6FARHAT C.A method of finite element tearing and interconnecting and its parallel solution algorithm[J].Int J Numer Methods Eng,1991,32:1205-1227. 被引量:1
  • 7Rama Mohan Rao A.A new parallel overlapped domain decomposition method for nonlinear dynamic finite element analysis[J].Comput & Struct,2003,81:2441-2454. 被引量:1
  • 8NEWMARK N M.A method of computation for structural dynamics[J].J Eng Mech Div ASCE,1959:67-94. 被引量:1
  • 9LIU H T J R.Implicit-explicit finite elements in transient analysis:implementation and numerical examples[J].J Appl Mech,1978,4S:375-378. 被引量:1
  • 10PAIN C C,CREDE O,Goddard A J H.A neural network graph partitioning procedure for grid based domain decomposition[J].Int J Numer Meth Engng,1999,44(5):593-613. 被引量:1

共引文献12

同被引文献41

  • 1熊焰,陈欢欢,苗付友,王行甫.一种解决组合优化问题的量子遗传算法QGA[J].电子学报,2004,32(11):1855-1858. 被引量:50
  • 2恽为民,席裕庚.遗传算法的运行机理分析[J].控制理论与应用,1996,13(3):297-304. 被引量:78
  • 3冯斌,须文波.基于粒子群算法的量子谐振子模型[J].计算机工程,2006,32(20):18-21. 被引量:11
  • 4唐洁.VC++多线程开发技术[J].电脑编程技巧与维护,2007(7):21-31. 被引量:3
  • 5周世勋.量子力学教程[M].北京:高等教育出版社,2006:161. 被引量:6
  • 6WANG SHANSHAN, SUN LEI. Dynamic rotation gate quantum al- gorithm and performance analysis [ C ]// 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems. Wash- ington, DC: IEEE Press, 2010:366-369. 被引量:1
  • 7ZttAO WE1, YE SAN, SHI HU1SHU. Fuzzy quantum-behaved l?ar- title swarm optimiTation[ C]// 2010 International Symposium on Computational Intelligence and Design. Washington, DC: IEI'; Press, 2010:49 -52. 被引量:1
  • 8V1DYA R C, PHANEENDR H D, SHIVAKUMA M S. Quantum algorithm and hard problems [ C]// 2006 5th IEEE Internet Conference on Congnitive Informafics. Washington, DC: IEEE Press, 2006:783-787. 被引量:1
  • 9TENG HAO, ZHAO BAOHUA, YANG BINGRU. An improvet mutative scale chaos optimization quantum genetic algorithm[ C]/1 International Conference on Natural Computation. Washington,I DC: IEEE Press, 2008:301-305. 被引量:1
  • 10JIN YANXIA, ZHOU HANCHANG. A particle swarm optimization algorithm based on hyper-ehaotie sequences [ C]// The l st International Conferenee on Information Science and Engineering. Washington, DC: IEEE Press, 2009:3951 -3954. 被引量:1

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部