期刊文献+

量子漂移扩散模型解的指数衰减 被引量:1

Exponential Decay of Solutions for Quantum Drift-Diffuse Model
下载PDF
导出
摘要 研究了量子漂移扩散模型解的指数衰减.该模型来自于量子流体动力学模型,是一个非线性四阶抛物型偏微分方程组,由于比较原理对于四阶偏微分方程不再成立,进而最大模估计成为本质困难.利用熵函数的方法,结合差分法,能量估计,构造差分方程解的迭代.从而在时间增大时,得到解在L1意义下以指数速度衰减到常定态. An exponential decay of solutions for quantum drift-diffuse model is studied. This model is derived from quantum hydrodynamic model of a nonlinear fourth-order partial differential system. Since the comparison principle does not hold for the fourth-order partial differential equation, the L^∞ -estimate becomes the essence of the difficulty. Applying the methods of entropy functional, semidiscretization, energy estimation and iteration, the solutions converge is obtained for constant steady-state exponential decay in the sense of L^1 norm as the time tend to infinity.
作者 梁波
出处 《大连交通大学学报》 CAS 2009年第4期111-112,共2页 Journal of Dalian Jiaotong University
关键词 存在性 指数衰减 大时间行为 existence exponential decay large time behavior
  • 相关文献

参考文献3

  • 1JuNGEL A, PINNAU'R. Global non-negative solutions of a nonlinear fourth-oder parabolic equation for quantum systems[ J ]. SIAM J. Math. Anal,2000,32:760-777. 被引量:1
  • 2JUNGEL A, TOSCANI G. Exponential decay in time of solutions to a nonlinear fourth-order parabolic equation [J]. Z. Angew Math. Phys. ,2003,54:377-386. 被引量:1
  • 3梁波,皇甫明,载甓鸣,戴晓鸣.定态多维量子流体动力学模型解的存在性[J].大连交通大学学报,2008,29(1):6-8. 被引量:3

二级参考文献3

  • 1BREZZI F,GASSER I,Markowich P A et al.Thermal equailibrium states of the quantum hydrodynamic model for semiconductors in one dimension[J].Appl.Math.Lett.,1995,(8):47-52. 被引量:1
  • 2JUNGELl A.A steady-state quantum Euler-Possion system for potential flows[J].Commun.Math.Phys.,1998,(194):463-479. 被引量:1
  • 3GILBARG,TRUDINGER N S.Elliptic Partial Different Equations of Second Order[M].New York:Springer-Verlag,1983. 被引量:1

共引文献2

同被引文献10

  • 1CAHN J M,HILLIARD J E.Free energy of a non-uniform system Ⅰ.Interfacial free energy[J].J.Chem.Phys,1958,28:258-367. 被引量:1
  • 2MYERS T G.Thin films with high surface tension[J].SIAM Reviews,1998,40:441-462. 被引量:1
  • 3BEMIS F,FRIEDMAN.Higher order nonlinear degenerate parabolic equations[J].J.Differential Equations,1990,83:179-206. 被引量:1
  • 4BERTOZZI AL,PUGH M.The lubrication approximation for thin viscous films:The moving contact line with a " porous media" cut-off of van der Waals interactions[J].Nonlinearity,1994,7:1535-1564. 被引量:1
  • 5BERTOZZI AL,PUGH M.The lubrication approximation for thin viscous films:regularity and long time behavior of weak solutions[J].Comm.Pure Appl.Math,1996,49:85-123. 被引量:1
  • 6ANSINI L,GIACOMELLI L.Doubly nonlinear thin-film equations in one space dimension[J].Arch.Rational Mech.Anal,2004,173:89-131. 被引量:1
  • 7CARLEN E A,ULUSOY S.An entropy dissipation estimate for a thin film type equation[J].Comm.Math.Sci,2005,3:171-178. 被引量:1
  • 8CARRILLO J A,TOSCANI G.Long-time asymptotics for strong solutions of the thin film equation[J].Commun.Math.Phys,2002,225:551-571. 被引量:1
  • 9ADAMS R A.Sobolev Space[M].New York:Academic Press,1975. 被引量:1
  • 10GILBARG D,TRUDINGER NS.Elliptic Partial Different Equations of Second Order Seconded[M].New York:Springer-Verlag,1983. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部