摘要
研究表明:庞加莱-契达耶夫正则方程是非正则变量下相当普遍的哈密顿方程.这表明,多余坐标下的广义拉格朗日方程和广义哈密顿方程(其阶数低于带有不定乘子的方程),以及准坐标下的欧拉-拉格朗日方程,都是庞加莱-契达耶夫方程的特殊情况;从而,可将其理论推广到上述系统.而且还研讨了庞加莱-契达耶夫方程在非完整系动力学中的应用问题.
This paper proves that the canonical equations of Poincarè-Chtaev are more general Hamilton equations in terms of noncanonical variables. This shows that the generalized Lagrange equations and the generalized Hamilton equations in terms of remainder coordinates, as well as the Euler-Lagrange equations in terms of quasi-coordinates are particular cases of the Poincarè-Chtaev equations. And then, the theory is extended to the above systems. The application of Poincarè-Chetaev equations in dynamics of nonholonomic systems is also discussed.
出处
《力学进展》
EI
CSCD
北大核心
1998年第3期420-426,共7页
Advances in Mechanics
关键词
P-C方程
分析力学
可迁李群
非完整系动力学
Poincarè-Chtaev equations, migratory Lie group,noncanonical coordinate, dynamics of nonholonomic system