期刊文献+

多尺度小波分解下的自适应语音消噪算法研究 被引量:1

Study on adaptive speech signal noise cancellation algorithm with multi-scale wavelet decomposition
下载PDF
导出
摘要 将小波变换的理论引入到自适应语音消噪系统中,分析了多尺度小波分解下的LMS自适应消噪算法(MSWD-LMS)的原理,该算法将输入向量分解到多尺度空间,减小了自适应滤波器输入向量自相关矩阵的谱动态范围;将变步长LMS算法与多尺度小波变换的思想结合,提出了一种新的小波自适应语音消噪算法(MSWD-VSS-LMS),新算法既减少了输入向量自相关矩阵条件数,又克服了固定步长LMS算法在收敛速度与收敛精度方面与步长因子μ的矛盾,获得了更好的语音信号处理的收敛速度和稳定性。仿真结果表明新算法取得了较好的效果。 The wavelet transfotan theory is introduced into the adaptive speech signal noise cancellation system.The principle of LMS adaptive speech signal noise cancellation algorithm with multiple-scale wavelet decomposition is analyzed.The MSWD-LMS algorithm converges faster than the elassical LMS algorithm,and the spectrum dynamic range of auto-correlation matrix of the input vector which is decomposed to multiple-scale space is deereased.The variable step size LMS algorithm and the multiplescale wavelet decomposition are merged into the adaptive speech signal noise cancellation system.A novel method is proposed, that is,a LMS adaptive algorithm with Variable Step Size based on Multiple-Scale Wavelet Decomposition(MSWD-VSS-LMS).The novel algorithm can decrease the conditions of auto-correlation matrix of the input vector,as well as resolve the contradiction that fixed step size cannot result in fast eonvergence speed and low residual error simultaneously.Experimental results demonstrate that the new algorithm has not only better convergence property but also belier stable mean square errors than the former algorithms
出处 《计算机工程与应用》 CSCD 北大核心 2009年第23期154-157,共4页 Computer Engineering and Applications
基金 湖南省自然科学基金No.06JJ50118 衡阳师范学院青年骨干教师资助项目~~
关键词 自适应语音消噪 最小均方(LMS)算法 变步长 多尺度小波分解 adaptive speech signal noise cancellation Least Mean Square(LMS) algorithm variable step size muhiple-scale waveletdecomposition
  • 相关文献

参考文献9

二级参考文献40

  • 1覃景繁,韦岗.基于S型函数的变步长LMS自适应滤波算法[J].无线电工程,1996,26(4):44-47. 被引量:40
  • 2卢传发,张剑云.小波变换在噪声抑制中的应用研究[J].解放军电子工程学院学报,2000,19(1):12-16. 被引量:1
  • 3[3]Chen C F,Hsiao C H. Wavelet approach to optimising dynamic systems[J].IEE Proc.Control Theory Appl,1999,146(2):213-219. 被引量:1
  • 4维德罗B 史蒂恩斯SD 王永德 龙宪惠 译.自适应信号处理[M].成都:四川大学出版社,1989.. 被引量:4
  • 5Widrow B, Stearns S D. Adaptive signal processing[M]. Englewood Cliffs, NJ:Prentice-Hall,1985. 被引量:1
  • 6Kwong R H Johnston E W. A variable step size LMS algorithm[J]. IEEE Trans. Signal Processing, 1992, 40, 1633-1642. 被引量:1
  • 7Mathews V J,Xie Z. Stochastic gradient adaptive filters with gradient adaptive step sizes[A]. IEEE Int. Conf. Acoust., Speech, Signal Processing[C]. Albuquerque, NM, 1990. 1385-1388. 被引量:1
  • 8Karni S,Zeng G. A new convergence factor for adaptive filters[J]. IEEE Trans. Circuits Syst., 1989, 36:1011-1012. 被引量:1
  • 9Feuer A,Weinstein E. Convergence analysis of LMS filters with uncorrelated Gaussian data[J]. IEEE Trans.Acoust.,Speech,Siganl Processing, 1985, 33: 222-229. 被引量:1
  • 10Widrow. A comparison of adaptive algorithm based on method of steepest descent and random search[J].IEEE Transaction ASSP 24,1976-09 被引量:1

共引文献168

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部