期刊文献+

薄板弯曲分析的16节点流形单元 被引量:2

16-node manifold element for thin plate-bending analysis
下载PDF
导出
摘要 将数值流形方法应用于薄板弯曲变形的分析,采用标准矩形网格作为数学网格,并提出16节点的矩形薄板流形单元,推导出用于薄板弯曲分析的流形格式和单元矩阵;单元节点的覆盖函数采用C0和C1阶的局部多项式函数形式,单元采用覆盖自由度为基本求解变量,解决了有限元法中采用挠度和转角为求解变量的复杂计算过程;该16节点流形单元应用于正方形薄板弯曲变形的实例分析,结果表明,与有限元分析相比,流形单元的计算精度和收敛性可大幅度提高。 Numerical manifold method is applied to analyze thin plate bending deformation. 16-node manifold element is constructed based on cover system with rectangular mathematical mesh. Numerical manifold formulas and element matrices are derived in this paper. C^0 and C^1 local polynomial is adopted as the node cover function, cover DOF is defined as the basic unknown variables, and it can overcome the very complicated computation process in FEM with deflection and rotational angle as the unknown variables. As an application, 16-node manifold element is used to analyze bending deformation of square thin plate; the results show that numerical manifold method with 16-node element, compared with finite element method, can improve accuracy and convergence greatly.
机构地区 广东工业大学
出处 《塑性工程学报》 CAS CSCD 北大核心 2009年第4期29-34,共6页 Journal of Plasticity Engineering
基金 国家自然科学基金资助项目(50775044) 教育部博士点基金资助项目(20050562003)
关键词 薄板弯曲 数值流形 流形单元 thin plate bending numerical manifold method manifold element
  • 相关文献

参考文献13

  • 1Razaqpur A G, Nofal M, Vasilescu A. An improved quadrilateral finite element for analysis of thin plates [J]. Finite Elern. Anal. Des. , 2003.40(1): 1-23. 被引量:1
  • 2Pitacco I.. A new plate bending element based on orthogonal polynomials expansion of the curvature field [J]. Int. J. Numer. Meth. Eng. , 2007. 72(2) : 156-179. 被引量:1
  • 3Robert D Cook, David S Malkus, Michael E Plesha, and Robert J Witt. Concepts and Applications of Finite Element Analysis[C]. 4th Edition. New York:John Wiley Sons, 2001. 被引量:1
  • 4Chen G, Ohnishi Y, Ito T. Development of high-order manifold method[J]. Int J Num Meth Engrg, 1998. 43: 685-712. 被引量:1
  • 5Shi GH. Numerical Manifold MethodiCAl. In: Proceedings of the 2nd International congress on analysis of discontinuous deformation, 1997 : 1-35. 被引量:1
  • 6Kenjiro Terada, Mao Kurumatani. Performance assessment of generalized elements in the finite cover mettiod [J]. Finite Elem. Anal. Des. , 2004. 02: 111-132. 被引量:1
  • 7Terada K, Kurumatani M. An integrated procedure for three-dimensional structural analysis with the finite cover method[J]. Int. J. Numer. Methods Eng. 2005.63 (15) :2102-2123. 被引量:1
  • 8Suzuki K, Ohtsubo H, Hino Kei. Analysis of fracture mechanism using adaptive finite cover method[J]. Nippon Kikai Gakkai Ronbunshu A. 2004. 70(3) :399-405. 被引量:1
  • 9魏高峰,冯伟.弹性力学中的一种非协调数值流形方法[J].力学学报,2006,38(1):79-88. 被引量:10
  • 10王芝银,李云鹏.数值流形方法及其研究进展[J].力学进展,2003,33(2):261-266. 被引量:25

二级参考文献33

共引文献98

同被引文献21

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部