期刊文献+

AprioriTid算法的改进 被引量:3

Improvement of AprioriTid algorithm
下载PDF
导出
摘要 针对关联规则挖掘的AprioriTid算法缺点提出了一种改进的算法,即在构造k阶Tid表时,考虑当前交易项包含的所有k阶候选项的全部元素组成的集合,它肯定是当前交易项的子集。如果它的范数大于k就将其写入k阶Tid表中,而不是它所包含的所有k阶候选项集都写入表中,这样必然减少下一次寻找k+1阶大项集时所需要扫描的交易量,从而使AprioriTid算法得到进一步优化。通过在Northwind数据集上的实验,验证了该算法有效地优化了空间复杂度和时间复杂度。 An improved AprioriTid algorithm is presented, which avoids the shortcoming of AprioriTid algorithm in association rules mining. The basic idea of the algorithm is: When construct the k-Tid tables, the set is composed by all elements of candidate k-itemsets included in the current transaction item, it is certainly the subset of the current transaction item. lfits norm is greater than k, then it will be stored in the k-Tid table, not all of candidate k-itemsets included in the current transaction item. Thus it certainly reduces the amount of scanning transactions when finding the k+1-large itemsets next time and optimizes the AprioriTid algorithm to some extent. By experiment in the Northwind dataset, it shows that the algorithm much effectively optimizes space complexity and time complexity.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第15期3581-3583,共3页 Computer Engineering and Design
基金 贵州省2008年省级信息化专项基金项目(0830) 贵州省科技计划工业攻关基金项目(黔科合GY字[2008]3035)
关键词 关联规则挖掘 AprioriTid 大项集 范数 Tid表 association rules mining AprioriTid large itemset norm Tid table
  • 相关文献

参考文献4

二级参考文献36

  • 1王益玲,赵英凯.智能故障诊断系统中的知识发现方法[J].控制工程,2004,11(5):406-408. 被引量:5
  • 2吴安阳,赵卫东.基于多最小支持度的空间关联规则发现[J].计算机应用,2005,25(9):2171-2174. 被引量:7
  • 3冯兴杰,周谆.Apriori算法的改进[J].计算机工程,2005,31(B07):172-173. 被引量:17
  • 4马光志,张生庭.基于关联规则的Web文档分类[J].计算机工程与设计,2005,26(9):2515-2518. 被引量:8
  • 5Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases [C]. Proceedings of the ACM SIGMOD conference on management of data, 1993, 207-216. 被引量:1
  • 6Han J, Pei J, Yin Y. Mining frequent pattems without candidate generation [C]. Proc 2000 ACM-SIGMOD Int Conf Management of Data(SIGMOD' 00), Dalas, TX, 2000. 被引量:1
  • 7Savasere A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules in large databases[C]. Proceedings of the 21st International Conference on Very large Database,1995. 被引量:1
  • 8Mannila H, Toivonen H, Verkamo A. Efficient algorithm for discovering association rules[C]. AAAI Workshop on Knowledge Discovery in Databases, 1994.181-192. 被引量:1
  • 9Toivonen H. Sampling large databases for association rules[C].Bombay, India: Proceedings of the 22nd International Conference on Very Large Database, 1996. 被引量:1
  • 10Brin S, Motwani R, Silverstein C. Beyond market baskets: Generlizing association rules to correlations[C]. Proceedings of the ACM SIGMOD, 1996. 255-276. 被引量:1

共引文献119

同被引文献19

  • 1徐章艳,刘美玲,张师超,卢景丽,区玉明.Apriori算法的三种优化方法[J].计算机工程与应用,2004,40(36):190-192. 被引量:71
  • 2胡斌,蒋外文,蔡国民,黄天强,卓月明.基于位阵的更新最大频繁项集算法[J].计算机工程,2007,33(3):59-61. 被引量:4
  • 3HAN Jiawei,MICHELINE K.数据挖掘概念与技术[M].北京:机械工业出版社,2006:137-145. 被引量:7
  • 4AGRAWAL R,IMIELINSKI T,SWAMI A. Database mining:a performance perspective[J]. IEEE Transactions on Knowledge and Data Engineering, 1993,5(6):914-925. 被引量:1
  • 5AGRAWAL R,SRIKANT R.Fast algorithms for mining association rules in large databases[C]. In Proc.Of the 20th Int.Conf.on Very Large Data Bases (VLDB), Santiago, Chile, Septemer, 1994(2):478-499. 被引量:1
  • 6PARK J S,CHEN M S,YU P S.Using a hash- based method with transaction trimming for mining association rules[J].IEEE Trans on Knowledges Data Engineering, 1997,9(5):813- 825. 被引量:1
  • 7Liu Yongmei,Guan Yong.FP_growth algorithm for application in research of market basket analysis[J].Computational Cybernetics,2008.ICCC 2008.IEEE International Conference on,2008: 269-272. 被引量:1
  • 8ChuckL.Hadoop实战[M].韩冀中,译.北京:人民邮电出版社,2011:37-41. 被引量:2
  • 9Almentero B K. Alexandre Gonalves Evsukoff and Marta Mattoso. DWMiner:A tool for mining frequent item sets efficiently in data warehouses[A].2006.212-224. 被引量:1
  • 10AGRAWAL R, SRIKANT R. Fast algorithms for mining as- sociation rules [C]. Proceedings of the 20th International Conference on Very Large Data Bases. Santiago,Chile, 1994 : 487-499. 被引量:1

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部