期刊文献+

基于k-means聚类的神经网络分类器集成方法研究 被引量:7

Study of ensemble method of classifiers for neural networks based on k-means clustering
下载PDF
导出
摘要 针对差异性是集成学习的必要条件,研究了基于k-means聚类技术提高神经网络分类器集成差异性的方法。通过训练集并使用神经网络分类器学习算法训练许多分类器模型,在验证集中利用每个分类器的分类结果作为聚类的数据对象;然后应用k-means聚类方法对这些数据聚类,在聚类结果的每个簇中选择一个分类器代表模型,以此构成集成学习的成员;最后应用投票方法实验研究了这种提高集成学习差异性方法的性能,并与常用的集成学习方法bagging、adaboost进行了比较。 Aiming at diversity being a necessary condition of the ensemble learning,this paper studies the method for improving diversity of the neural networks ensemble based on k-means clustering technique.This paper proposes a selecting approach that is first to train many classifiers through training set with neural network algorithm,and uses the result by the classifiers from validation set for clustering.And then this paper uses the k-means algorithm to cluster the data set from the result and selects a classifier model from every cluster to make up of the membership of the ensemble learning.At last,thls paper studies the performance of ensemble method by using vote method and compare performance with bagging and adaboost methods.
作者 李凯 常圣领
出处 《计算机工程与应用》 CSCD 北大核心 2009年第22期120-122,149,共4页 Computer Engineering and Applications
基金 河北省教育厅基金资助(No.2006406)
关键词 差异性 集成学习 分类器 聚类 diversity ensemble learning classifier clustering
  • 相关文献

参考文献10

  • 1Opitz D,Shavlik J.Generating accurate and diverse members of a neural-network ensemble[].Advances in Neural Information Pro-cessing Systems.1996 被引量:1
  • 2Yu J,Huang H K.A new weighting fuzzy C-means algorithms[].Theth IEEE International Conference on Fuzzy Systems.2003 被引量:1
  • 3Zhi-Hua Zhou,Jianxin Wu,Wei Tang.Ensembling neural networks: many could be better than all[].Artificial Intelligence.2002 被引量:1
  • 4Rosen B E.Ensemble Learning Using Decorrelated Neural Networks[].Connection Science.1996 被引量:1
  • 5HAKAN A.Decision trees using model ensemble-based nodes[].Pattern Recognition.2007 被引量:1
  • 6ALBERT H R,ROBERT S,ALCEU D S,et al.Pairwise fusion matrixfor combining classifiers[].Pattern Recognition.2007 被引量:1
  • 7SIRLANTZIS K,HOQUE S,FAIRHURST MC.Diversityin multiple classifier ensembles based on binary feature quan-tisation with application to face recognition[].Applied Soft Computing.2008 被引量:1
  • 8Giacinto G,Roli F.Design of effective neural network ensembles for image classification purposes[].Image and Vision Computing.2001 被引量:1
  • 9Yang M S,Wu K L.A similarity-based robust clustering method[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2004 被引量:1
  • 10C. L. Blake,and C. J. Merz.UCI repository of machine learning databases. http://www.ics.uci.edu/ . 1998 被引量:1

同被引文献62

引证文献7

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部