摘要
文章采用无网格Galerkin方法与有限元(EFG-FE)耦合的方法来计算裂纹问题,这种耦合的方法不仅解决了无网格Galerkin法力学边界条件施加的难点,而且还克服了无网格Galerkin法耗时较多的缺点;运用线弹性断裂力学理论,分别采用了线性基函数、二次基函数和部分扩展基,对有限板单边裂纹的应力强度因子和受拉中心斜裂纹方形板进行了分析,数值计算结果表明了方法的有效性。
The fracture problems are calculated with a coupled element-free Galerkin-finite element method. The method not only treats essential boundary conditions easily, but it also improves computation efficiency. Based on the theory of linear elastic fracture mechanics, the linear basis function, quadratic basis function and partially enriched basis function are used to analyze the stress intensity factors and the normalized stress intensity factors of the finite plates with single edge crack and a rectangular plate with a center crack under a distributed load. The numerical calculation results reveal the effectiveness of the present method.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第7期1061-1064,共4页
Journal of Hefei University of Technology:Natural Science
关键词
无网格GALERKIN法
EFG-FE
应力强度因子
element-free Galerkin(EFG) method
element-free Galerkin-finite element(EFG-FE)
stress intensity factor