期刊文献+

Gaussian小波SVM及其混沌时间序列预测 被引量:3

Gaussian Wavelet SVM and Its Applications to Chaotic Time Series Forecasting
下载PDF
导出
摘要 为了提高混沌时间序列的预测精度,针对小波有利于信号细微特征提取的优点,结合小波技术和SVM的核函数方法,提出基于Gaussian小波SVM的混沌时间序列预测模型。证明了偶数阶Gaussian小波函数满足SVM平移不变核条件,并构建相应的Gaussian小波SVM。对混沌时间序列进行相空间重构,将重构相空间中的向量作为SVM的输入参量。用Gaussian小波SVM与常用的径向基SVM及Morlet小波SVM进行对比实验,通过对Chens混沌时间序列和负荷混沌时间序列的预测,结果表明,Gaussian小波SVM的效果比其他两种SVM更好。 To improve the accuracy of chaotic time series forecasting, Gaussian wavelet support vector machine (SVM) forecasting model is proposed, which combines the wavelet technology with SVM kernel function method, and based on that the wavelet is benefi- cial to extracting imperceptible features of signal. It is proved that the even order derivative Gaussian wavelet function is an admissible translation-invariant kernel of SVM, and corresponding Gaussian wavelet SVM is constructed. The chaotic time series is reconstructed in phase space, and the vector in phase space reconstruction is used as the input of SVM. The experiments of forecasting Chen's chaotic time series and load chaotic time series are conducted using the proposed SVM, the conventional radial basis SVM and the Morlet wavelet SVM respectively. The comparison results show that Gaussian wavelet SVM has better performance than the other two SVMs.
出处 《控制工程》 CSCD 北大核心 2009年第4期468-471,共4页 Control Engineering of China
基金 西南交通大学博士生创新基金资助项目(2007-3)
关键词 混沌时间序列预测 相空间重构 Gaussian小波核 负荷预测 Chaotic time series forecasting phase space reconstruction Gaussian wavelet kernel load forecasting
  • 相关文献

参考文献12

  • 1O'Neill-Carrllo E,Heydt G T,Kostelieh E J.Chaotic phenomena in power systems:detection and applications[J].Electric Machines and Power Systems,1999,27(1):79-91. 被引量:1
  • 2Cai M L,Cai F,Shi A G,et al.Chaotic time series prediction based on local-regioa multi-steps forecasting model[C].Dalian,China:Advances in Neural Networks-ISNN 2004:International Symposium on Neural Networks,Part Ⅱ,2004. 被引量:1
  • 3张家树,肖先赐.用于混沌时间序列自适应预测的一种少参数二阶Volterra滤波器[J].物理学报,2001,50(7):1248-1254. 被引量:51
  • 4Mukherjee S,Osuma E,Girosi F.Nonlinear prediction of chaotic time series using support vector machines[C].Amelia,Island:ceedings of the IEEE Workshop on Neural Networks for Signal Proceasing Ⅶ.1997. 被引量:1
  • 5江田汉,束炯.基于LSSVM的混沌时间序列的多步预测[J].控制与决策,2006,21(1):77-80. 被引量:27
  • 6Vapnik V N.Statistical learning theory[M].New York:SpringerVerlag,2000. 被引量:1
  • 7Nello C,John S T.An introduction to support vector machines and other kernel-basod learning method,,[M].UK:Cambridge University Press,2000. 被引量:1
  • 8Zhang L,Zhou W D.Jino L C.Wavelet support vector maohine[J].IEEE Transactions on systems,man,and cybernetics-Part B:cybernetics,2004,34(1):34-39. 被引量:1
  • 9Burges C J C.Geometry and invarianee in kernel based methods[C].Cumbridge:MIT Press,1999. 被引量:1
  • 10Smola A,Scholkopf B,Muller K R.The connection between regularizution operators and support vector kernel-[J].Neural Network,1998,11(4):637-649. 被引量:1

二级参考文献23

  • 1崔万照,朱长纯,保文星,刘君华.混沌时间序列的支持向量机预测[J].物理学报,2004,53(10):3303-3310. 被引量:99
  • 2Cortes C, Vapnik V N. Support Vector Networks[J].Machine Learning, 1995,20(3): 273-295. 被引量:1
  • 3Mukherjee S, Osuma E, Girosi F. Nonlinear Prediction of Chaotic Time Series Using Support Vector Machines[A]. Proc of the IEEE Workshop on Neural Networks for Signal Processing [C]. Ameliz Island, 1997, 511-520. 被引量:1
  • 4Suykens J A K,Gestel T V,Brahanter J D0et al. Least Squares Support Vector Machines [M]. River Edge World Scientific, 2002: 71-148. 被引量:1
  • 5Grassberger P, Procaccia I. Characterization of Strange Attractors[J]. Phys Rev Let, 1983, 50(5):346-349. 被引量:1
  • 6Cao L Y. Practical Method for Determining the Minimum Embedding Dimension of a Scalar Time Series[J]. Physica D,1997,110(1-2):43-50. 被引量:1
  • 7Gautama T, Mandie D P, Van Hulle M M. A Differential Entropy Based Method for Determining the Optimal Embedding Parameters of a Signal[A]. Proc of the Int Conf on Acoustics, Speech and Signal Processing[C]. Hong Kong, 2003,6:29-32. 被引量:1
  • 8Schreiber T, Schmitz A. Surrogate Time Series [J].Physica D, 2000,142 (3/4): 346-382. 被引量:1
  • 9Arbarnel H D I, Brown R, Kadtke J B. Prediction in Chaotic Nonlinear Systems, Methods for Time Series with Broadband Fourier Speetra[J]. Physical Review A,1990,41(4):1782-1807. 被引量:1
  • 10Huebner U, Abraham N B, Weiss C O. Dimensions and Entropies of Chaotic Intensity Pulsations in a Single-mode Far-infrared NH3 Laser [J]. Physical Review A, 1989, 40(11): 6354-6365. 被引量:1

共引文献80

同被引文献31

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部