摘要
目的:探讨基于神经网络的31PMR波谱在辨别肝细胞癌,正常肝和肝硬化中的价值。方法:运用自组织特征映射神经网络(SOM)分析66个31PMRS数据,其中包括肝细胞癌(13个样本),正常肝脏(16个样本)和肝硬化(37个样本)。结果:31PMRS可以用于肝细胞癌与肝硬化结节的诊断和鉴别诊断,经四个实验证明,基于神经网络模型的31PMR波谱数据分析可以将肝细胞癌的诊断正确率从85.4%提高到92.31%。结论:基于神经网络模型的31PMRS波谱数据分析为活体肝细胞癌的诊断提供了一种有价值的诊断手段。
Objective:To investigate the ^31 p MR spectroscopy based on neural networks so as to distinguish hepatocellular carcinoma,normal liver and cirrhosis in value.Methods:Using self-organlzing map neural network (SOM), we analysed 66 data of^31P MRS, including hepatocellular carcinoma (13 samples), normal liver (16 samples) and liver cirrhosis (37 samples). Results:alP MRS can be used to diagnose and distinguish hepatocellular carcinoma and liver cirrhosis nodules. The four experiments showed that neural network model based on the ^31 p MR spectroscopy data analysis may be increased diagnostic accuracy rate of hepatooellular carcinoma from 85.4% to 92.31%. Conclusion: ^31p MRS data analysis based on neural network model provides a valuable diagnostic tool of hepatooellular carcinoma in vivo.
出处
《医学影像学杂志》
2009年第7期860-863,共4页
Journal of Medical Imaging
基金
山东省自然科学基金项目资助
项目编号Y2006C96
关键词
磷-31
磁共振波谱
肝细胞癌
神经网络
31-P hosphorus
Magnetic resonance spectroscopy
Hepatocellular carcinoma
Neural network