期刊文献+

用Bayesian正则化BP神经网络预测稀土永磁体性能

Property prediction of the (Nd_2Fe_(14)B/α-Fe) permanent magnet based on the Bayesian-regularization BP neural network
下载PDF
导出
摘要 针对一般BP神经网络泛化能力差,在Bayesian正则化BP神经网络的基础上,运用加权检验、"表决网"等方法的思路训练网络,并通过主成分分析方法对输入数据进行降维,建立了磁粉制备工艺(淬速度和晶化退火温度)、合金成分与磁性能之间的BPNN(back propagation network)预测模型。结果表明:该模型泛化能力较高,预测的Br相对误差在2%左右、Hcj和(BH)max都在5%以内,且每次预测的相对误差平均值波动不超过1%。 The (Nd2Fe14B/α-Fe) permanent magnetic property prediction model was bulit by taking magnetic particle preparation processes(spinning speed and annealing temperature) and alloy components as network input, the magnetic properties as output. For enhancing the model's ability of generalization it was trained by the way of weighted detecting method and clustering multiple based on the Bayesian-regularization BP neural network. The input data was analyzed the principal components for reducing its dimension.The results show that this model's generalization is better. The relative error between the measured value and predicted value of Br is confined to about 2% and that of Hcj, (BH)max to 5%. And the average of the relative error fluctuates within 1% in every prediction.
出处 《电子元件与材料》 CAS CSCD 北大核心 2009年第8期75-77,85,共4页 Electronic Components And Materials
基金 四川省教育厅重点资助项目(No.2004A110)
关键词 纳米晶复相(Nd2Fe14B/α-Fe)永磁体 主成分分析 BAYESIAN 正则化BP神经网络 泛化 nanocrystalline multiphase (NdzFe14B/a-Fe) permanent magnet principal component analysis Bayesian-regularization BP neural network generalization
  • 相关文献

参考文献6

二级参考文献53

  • 1方剑,席裕庚.神经网络结构设计的准则和方法[J].信息与控制,1996,25(3):156-164. 被引量:21
  • 2[1]MINNS A W,HALL M J.Artificial neural networks as rainfall-runoff models[J].J.Hydrol.Sci.J.1996,41:339-417. 被引量:1
  • 3[2]KARUNANITHI N,GRENNEY W J,WHITLEY D,et al.Neural networks for river flow prediction[J].J.Computing Civil Engng..1994,8:201-219. 被引量:1
  • 4[3]HSU K,GURUCAN S.River flow prediction using the cascade-correlation neural network learning architecture[C].Proceedings of the Water 99 Joint Congress,Brisbane,Australia;1999.94-99. 被引量:1
  • 5Coehoorn R, Mooij D B de, Duchateau J P W B, et al. [J]. J de Phys, 1988,49C: 8-669-670. 被引量:1
  • 6Stoner E C, Wohlfarth E P. [J]. Philos Trans,1948,240A:599-642. 被引量:1
  • 7Skomski R, Coey J M D. [J]. IEEE Trans Magn,1993,29(6):2860-2862. 被引量:1
  • 8Skomski R, Coey J M D. [J]. Phys Rev,1993,48B(21):15812-15815. 被引量:1
  • 9Kneller E F, Hawig R. [J]. IEEE Trans Magn,1991,27(4):3588-3600. 被引量:1
  • 10Manaf A, Leonowicz M, Davies H A, et al. [J]. Mater Lett,1992,13:194-198. 被引量:1

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部