期刊文献+

基于选择性注意和部分连接神经网络的人脸识别 被引量:3

Face Recognition Based on Selective Attention and Parcone Model
下载PDF
导出
摘要 为了克服以往人脸识别方法因特征提取带来的信息损失与不确定性因素,提出了一种应用于复杂场景中人脸识别方法,这种方法不需要进行特征提取.先对整幅图像使用选择性注意方法,在得到的显著区域中利用Adaboost算法进行人脸搜索与定位,最后将可能包含人脸区域的所有像素全部输入训练好的部分连接神经网络(Parcone)模型进行识别.整个识别过程全部自动完成,不需人工干预,也不必对图像进行预处理.通过利用MIT-CBCL人脸数据库和自建图像库进行的仿真实验表明,该人脸识别方法在复杂背景中具有较高的识别率,可适用于其他类型的目标识别. In order to overcome the loss of information and uncertainties in the previous methods of face recognition, this paper proposes a face recognition method in complex scene, and it does not need feature extraction. The method first used selective attention in the whole image, and then used Adaboost to search and locate the faces in the salience region. Finally, it put all pixels of the region which may contain face into trained partially connected neural evolutionary (Parcone) module to recognize. All of the recognition process was automatically and there is no need for image preprocessing. The experiments use MIT-CBCL face database and self-build image database, and the results show that this face recognition method has good recognition rate in complex background. The method in this paper can be applied to other types of target recognition.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期499-503,共5页 Journal of Xiamen University:Natural Science
基金 福建省自然科学基金(2009J01305) 厦门大学“985工程”二期项目资助
关键词 选择性注意 Parcone ADABOOST 人脸识别 特征提取 selective attentions Parcone Adaboost face recognition feature extraction
  • 相关文献

参考文献2

二级参考文献1

共引文献259

同被引文献41

  • 1李桂芝,安成万,杨国胜,谭民,涂序彦.基于场景识别的移动机器人定位方法研究[J].机器人,2005,27(2):123-127. 被引量:20
  • 2王英华.国外场景识别研究新进展[C]//第十届全国心理学学术大会论文摘要集.北京,中国学术期刊电子杂志社,2005:169-174. 被引量:1
  • 3De GARIS Hugo. A "partially connected neural evolutionary" model serving as the basis for building China's first artificial brain[C]//Proceedings of 2008 3rd International Conference on Intelligent System and Knowledge Engineering. Xiamen, China: IEEE Press, 2008 : 9-12. 被引量:1
  • 4NVidia Company. NVidia Tesla S1070 1U Computing System[EB/OL]. [2009-10-01]. http://www. nvidia. com/ object/product_tesla_s1070us. hr. 被引量:1
  • 5NVidia Company. NVIDIA_CUDA_Programming_Guide_ 2. 3 _ chs [EB/OL]. [2009-10-01]. http://developer. download, nvidia. com/compute/euda/2_ 3/toolkit/does/ NVIDIA_CUDA_Programming_Guide_2.3. pdf. 被引量:1
  • 6NVidia Company. NVIDIA_CUDA_BestPraeticesGuide_ 2. 3 [EB/OL]. [2009-10-01]. http://developer.download. nvidia.com/compute/curia/2_3/toolkit/docs/ NVIDIA_CUDA_BestPracticesGuide_2.3. pdf. 被引量:1
  • 7de Garis Hugo. A "partially connected neural evolution- ary" model serving as the basis for building China's first artificial brain[C]//Proceeding of 2008 3rd International Conference on Intelligent System and Knowledge Engi- neering. Xiamen, China : IEEE Press, 2008 : 9-12. 被引量:1
  • 8de Garis Hugo,Korkin Michael. The CAM-brain machine (CBM) an FPGA based hardware tool which evolves a 1000 neuron net circuit module in seconds and updates a 75 million nueron artificial brain for real time robot con- trol[J]. Neurocomputing, 2002,42 : 35-68. 被引量:1
  • 9LI Feifei, Perona P. A Bayesian hierarchical model for natural scene categories [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC, USA: IEEE Press, 2005 : 524-531. 被引量:1
  • 10Pan Lilan,Zhang Yue. Scene image elassfying via the par- tially connected neural network[C]//The 5th Internation- al Conference on Computer Seience & Education. Hefei, China: IEEE Press,2010:24-27. 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部