期刊文献+

应用联邦自适应UKF的卫星多传感器数据融合 被引量:11

Multi-sensor Data Fusion for Satellite Based on Federate Adaptive Unscented Kalman Filter
下载PDF
导出
摘要 在卫星自主导航系统中,一方面,系统状态模型存在难以准确建模的问题,要求信息融合算法具有一定的自适应性;另一方面,系统的量测模型通常具有较强的非线性,又要求信息融合算法在强非线性下保持较高的精度和鲁棒性。针对以上两个问题,本文提出了基于星敏感器、红外地平仪、磁强计、雷达高度计、紫外敏感器的多信息联邦自适应UKF组合导航方案,该方案将多个导航传感器提供的信息在联邦滤波器里融合,并采用自适应UKF算法构建联邦滤波器的子滤波器。采用这种方案,可有效组织并充分利用导航传感器提供的导航信息,并且系统模型具有一定的自适应性。数字仿真结果表明,与传统的联邦卡尔曼滤波方法相比,该方法更适合于非线性较强、系统模型参数不准确的场合,有效提高了导航精度。 Generally speaking, in a satellite autonomous navigation system, it is not easy to build a state model of the practical system, which requires the information fusion algorithm having some self-adaptive capability. However, due to nonlinearity in the system measurement model, the information fusion algorithm must maintain high accuracy and robustness in a strongly nonlinear circumstance. To this end, an advanced federal adaptive unscented Kalman filter(UKF) method is proposed based on star sensor, infrared horizon sensor, magnetometer, radar altimeter and ultraviolet sensor. This method combines information from multiple navigation sensors in the federated filter, and uses an adaptive UKF algorithm to build the local filter. With this method, information coming from navigation sensors can be effectively organized and fully utilized, and the system model possesses adaptability. Numerical simulation using the proposed method is compared to that only using a conventional federated Kalman filter. The results show that the proposed method is more suitable for systems that are highly nonlinear or have inaccurat parameters, and can make navigation more accurate.
出处 《应用科学学报》 CAS CSCD 北大核心 2009年第4期359-364,共6页 Journal of Applied Sciences
基金 航空科学基金(No.20070852009)资助项目
关键词 自主导航 组合导航 联邦滤波 自适应滤波 平淡卡尔曼滤波 autonomous navigation, integrated navigation, federated filter, adaptive filter, UKF
  • 相关文献

参考文献12

  • 1PASCAL V,MARCILLE H,DAMILANO P.Autonomous navigation for LEO satellites[J].Advances in the Astronautical Sciences,1998,100(2):657-669. 被引量:1
  • 2QIU Hongzhuan,ZHANG Hongyue,JIN Hong.Fusion algorithm of correlated local estimates[J].Aerospace Science and Techology,2004(8):619-626. 被引量:1
  • 3CHEN Lei,HE You,TANG Xiaoming.Comparison of distributed and federated filtering in multi-coordinate systems[C]//CIE'06.International Conference.Shanghai:IEEE,2006:1-4. 被引量:1
  • 4段方,刘建业,李荣冰.基于平淡卡尔曼滤波器的微小卫星姿态确定算法[J].上海交通大学学报,2005,39(11):1899-1903. 被引量:12
  • 5华冰,刘建业,熊智.联邦自适应滤波在SINS/北斗/星敏感器组合导航系统中的应用[J].东南大学学报(自然科学版),2004,34(B11):190-194. 被引量:13
  • 6MOGHARI M H,ABOLMAESUMI P.Compare unscented and extended Kalman filter algorithms in the rigid body point-based registration[C]//Proceedings of the 28th IEEE EMBS Annual International Conference.New York City:IEEE,2006,8:497-500. 被引量:1
  • 7潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 8NING Xiaolin,FANG Jiancheng,An autonomous celestial navigation method for LEO satellite based on unscented Kalman filter and information fusion[J].Aerospace Science and Technology,2007,11(2/3):222-228. 被引量:1
  • 9MAUS S,MACMILLAN S,CHERNOVA T,CHOI S,DATER D.The 10th generation international geomagnetic reference field[J].Physics of the Earth and Planetary Interiors,2005(151):320-322. 被引量:1
  • 10CARLOS R.Contributions of spherical harmonics to magnetic and gravitational fields[R].NASA,2004,3. 被引量:1

二级参考文献83

  • 1李东,李玉芳,金仲和,王跃林.使用太阳电池阵列的皮卫星姿态确定方法[J].光学精密工程,2004,12(z1):87-92. 被引量:12
  • 2Arulampalam S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188. 被引量:1
  • 3Thrun S,Fox D,Burgard W,et al.Robust monte carlo localization for mobile robots[J].Artificial Intelligence,2001,128(1-2):99-141. 被引量:1
  • 4Julier S J,Uhlmann J K,Durrant-Whyten H F.A new approach for filtering nolinear system[A].Proc of the American Control Conf[C].Washington:Seattle,1995:1628-1632. 被引量:1
  • 5Julier S J,Uhlmann J K.A general method for approximating nonlinear transformations of probability distributions[EB/OL].http://www.robots.ox.ac.uk/~siju/work/publications/Unscented.zip,1997-09-27. 被引量:1
  • 6Julier S J,Uhlmann J K.A consistent,debiased method for converting between polar and Cartesian coordinate systems[A].The Proc of AeroSense:The 11th Int Symposium on Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:110 -121. 被引量:1
  • 7Julier S J,Uhlmann J K.A new extension of the Kalman filter to nonlinear systems[A].The Proc of AeroSense:11th Int Symposium Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:54-65. 被引量:1
  • 8Julier S J.A skewed approach to filtering[A].The Proc of AeroSense:12th Int Symposium Aerospace/Defense Sensing Simulation Control[C].Orlando,1998:271-282. 被引量:1
  • 9Julier S J.The spherical simplex unscented transformation[A].American Control Conf[C].Denver,2003:2430-2434. 被引量:1
  • 10Julier S J,Uhlmann J K,Durrant-Whyte H F.A new approach for the nonlinear transformation of means and covariances in filters and estimators[J].IEEE Trans on Automatic Control,2000,45(3):477-482. 被引量:1

共引文献250

同被引文献83

引证文献11

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部