摘要
本文研究一类具高阶Laplace算子的非线性脉冲中立型时滞抛物偏微分方程的振动性质,利用一阶脉冲时滞微分不等式,获得了该类方程在两类不同边值条件下所有解振动的若干充分性判据。所得结论将脉冲时滞微分方程的振动性质推广到脉冲中立型时滞偏微分方程,同时也反映了脉冲和时滞在振动中的影响作用。
This paper studied the oscillatory properties of a class of nonlinear impulsive neutral delay parabolic partial differential equations with higher order Laplace operator. By using first order impulsive delay differential inequalities, some sufficient criteria for the oscillation of all solutions of such equations are obtained under two kinds of boundary value conditions. These results extend the oscillatory properties of impulsive delay differential equations to impulsive neutral delay partial differential equations and also reflect the influence action of impulsive and delay in oscillation.
出处
《工程数学学报》
CSCD
北大核心
2009年第4期663-670,共8页
Chinese Journal of Engineering Mathematics
基金
湖南省自然科学基金(05JJ40008)
湖南省教育厅科学研究项目(07C164)
关键词
脉冲
非线性中立型
时滞
抛物型偏微分方程
振动
高阶LAPLACE算子
impulse
nonlinear neutral type
delay
parabolic partial differential equation
oscillation
higher order Laplace operator