期刊文献+

基于模糊偏好的多目标粒子群算法的应用研究

Investigation and Application of the Multi Objective Particle Swarm Optimization Based on Fuzzy Perference
下载PDF
导出
摘要 研究了基于模糊偏好的多目标粒子群算法,算法将种群的最优解集进行Pareto排序,并动态更新Pareto解集,使其更快速的靠近Pareto前沿,对非劣解进行模糊评价,根据目标偏好的模糊信息,来确定折衷解的满意解。经典算例验证,该算法在计算时间及非劣解质量上,要优于多目标遗传算法。 In this paper,a fuzzy multi-objective Particle Swarm Optimization(MOPSO) based on Pareto dominance hybrid algorithm is investigated.Pareto dominance and fuzzy decision making are incorporated into particle swarm optimization.The algorithm takes Pareto set as repository of particles that is later used by other particles to guide their own flight.Satisfactory solution is get from Pareto set through fuzzy evaluate.From theoretical computation,the validity and reliability of proposed algorithm are verified by test functions studied.Comparing with multi GA,a new algorithm has more short computation time and better pareto solution.
出处 《机电工程技术》 2009年第7期81-84,共4页 Mechanical & Electrical Engineering Technology
基金 广东省育苗工程基金(编号:LYM08098)
关键词 多目标粒子群 模糊 非劣解 multi-objective particle swarm optimization fuzzy pareto solution
  • 相关文献

参考文献9

  • 1Bell D E,Keeney R L,Raiffa.Conflicting objectives in decision[M].Chichester:Wiley,1977. 被引量:1
  • 2Srinivaa N,Deb K.Muhiobjective optimization using nondominated sorting in genetic algorithms[J].Evolutionary Computation,1994(2):221-248. 被引量:1
  • 3Deb K,Agrawal S,Pratap A,et al.A fast elitist non-dominated sorting genetic algorithm for multi objective optimization:NSGA-Ⅱ[A].Parallel Problem Solving from Nature (PPSN Ⅵ)[C].Berlin,2000. 被引量:1
  • 4Gary G.Yen,Haiming Lu.Dynamic multi objective evolutionary algorithm:adaptive cell based rank and density estimation[J].Evolutionary Computation.2,(3):253-273. 被引量:1
  • 5X Hu,R C Eberhart,Y Shi.Particle swarm with extended memory for muhiobjective particle swarnl optimization[A].Proc.IEEE Swarm Intelligence Symp[C].Indianapllies,USA,2003:193-197. 被引量:1
  • 6K E Parsopoulos,M N Varhatis.Particle swami optimization method in multiobjective problems[A].Proc.ACM Symp.On Applied Computing Madrid[C].Spain,2002:603-607. 被引量:1
  • 7李宁,邹彤,孙德宝,秦元庆.基于粒子群的多目标优化算法[J].计算机工程与应用,2005,41(23):43-46. 被引量:54
  • 8M.A.Abido.Multiobjective Evolutionary Algorithms for Electric Power Dispatch Problem[J].Transactions on evolutionary computation,2006,10(3):315-329. 被引量:1
  • 9E Zitzler,K Ded,L Thiele.Comparison of multiobjective evolutionary algorithms empirical results[J].Evolutionary Computation,2002,8(2):173-195. 被引量:1

二级参考文献13

  • 1Pareto V.Cours D'Economic Politique,volume I and Ⅱ [M].F Rouge,Lausamme, 1896. 被引量:1
  • 2E Zitzler.Evolutionary algorithms for multiobjective optimization: methods and applications[D].Ph D thesis.Swiss Federal Institute of Technology,Zurich, 1999. 被引量:1
  • 3J Kennedy,R C Eberhart.Particle Swarm Optimization[C].In:Proc IEEE International Conference on Neural Networks, 1995. 被引量:1
  • 4R C Eberhart,Y Shi.Partiele swarm opt mization:developments,applications and resources[C].In:Proc,Congress on Evolutionary Computation 2001, Piscataway, NJ:IEEE Press,2001:81-86. 被引量:1
  • 5C A Coello Coello,M S Lechuga. MOPSO: A proposal for multiple objective particle swarm optimization[C]JrrIEEE Congress on Evolutionary Computation (CEC 2002 ), Honolulu, Hawaii, USA, 2002:1051 - 1056. 被引量:1
  • 6C A Coello Coello,G T Pulido, M S Lechuga. Handling multiple objectives with particle swarm optimization[J].IEEE Trans on Evolutionary Computation, 2004;8(3) :256-279. 被引量:1
  • 7K E Parsopoulos,M N Varhatis. Particle swarm optimization method in multiobjective problems[C].In : Proc, ACM Symp on Applied Computing,Madrid, Spain, 2002:603-607. 被引量:1
  • 8X Hu,R C Eberhart.Muhiobjective using dynamic neighborhood particle swarm optimization[C].In:Proc,Congress Evolutionary Compution, Honolulu,Hawaii, USA, 2002:1677-1681. 被引量:1
  • 9X Hu,R C Eberhart,Y Shi.Particle swarm with extended memory for multiobjective particle swarm optimization[C].In : Proc IEEE Swarm Intelligence Symp, Indianapolies, IN, USA, 2003:193-197. 被引量:1
  • 10E Zitzler, M Laumanns,L T C Fonseca et al.Why quality assessment of Multiobjective optimizers is difficult[C].In :Proc of the Genetic and Evolutionary Computation Conference (GECCO 2002 ), 2002:666-674. 被引量:1

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部