期刊文献+

一种基于密度最大值的聚类算法 被引量:12

Maximum density clustering algorithm
下载PDF
导出
摘要 提出了一种结合了基于密度聚类思想的划分聚类方法——"密度最大值聚类算法(MDCA)",以最大密度对象作为起始点,通过考察最大密度对象所处空间区域的密度分布情况来划分基本簇,并合并基本簇获得最终的簇划分.实验表明,MDCA能够自动确定簇数量,并有效发现任意形状的簇,对于未知数据集的处理能力和聚类准确度都优于传统的基于划分聚类算法. This paper proposes a new clustering algorithm named maximum density clustering algorithm(MDCA). In MDCA the concept of density is introduced to identify the count of clusters automatically. By selecting the densest object as the threshold, densities of those objects around the densest object are reviewed to decide the partition of basic blocks. Then the basic blocks are merged to form clusters of arbitrary shape. Experiments show that the ability and validity of MDCA in processing unknown datasets are all better than traditional partition-based clustering algorithms.
出处 《中国科学院研究生院学报》 CAS CSCD 北大核心 2009年第4期539-548,共10页 Journal of the Graduate School of the Chinese Academy of Sciences
基金 国家863计划(2006AA01Z454) 电子信息产业发展基金资助
关键词 数据挖掘 聚类 最大密度对象 K-MEANS DBSCAN data mining, clustering algorithm, densest object, k-means, DBSCAN
  • 相关文献

参考文献14

  • 1http://www.ics.uci.edu/~ndeam/MLSununary.html. 被引量:1
  • 2TDT3 Multilanguage Text Corpus,Version 2.0;LDC Catalog Number LDC2001T58,isbn:158563-193-0. 被引量:1
  • 3MacQueen J.Some methods for classification and analysis of multivariate observations[C]//LeCam L M,Neymon J,eds.Prec of Fifth Berkeley Symposium on Math.Star and Prob:University of California Press,1967:281-297. 被引量:1
  • 4Tan P N,Steinbach M,等著.范明,范宏建,等译.数据挖掘导论(Introduction to Data Mining)[M].北京:人民邮电出版社,2006. 被引量:1
  • 5Ester M,Kriegel H P,Sander J.A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Uzama M Fayyad,Padhraic Smyth,Gregory Piatetsky-Shapiro,eds.Proc of 2nd International Conference on Knowledge Discovery and Data Mining (KDD' 96).Portland:ACM Press,1996:226-231. 被引量:1
  • 6Ankerst M,Breunig M M,et al.OPTICS:ordering points to identify the clustering structure[C]//Alex Delis,Christos Falontsos,Shahram Ghandeharizadeh,eds.Prec ACM S1GMOD'99 lnt Conf on Management of Data.Philadelphia Pennsylvania:ACM Press,1999:49-60. 被引量:1
  • 7Agrawal R,C,ehrke J,GunopulosD,et al.Automatic subspace clustering of high dimensionaldata fordataminingapplications[C]//LanraHaas,Ashutosh Tiwary,eds.Prec of t998 ACM-SIGMOD Infl Conf on Management of Data.Seattle,Washington:ACM Press,1998:94-105. 被引量:1
  • 8Katzavounidis I,Kuo C,Zhang Z.A new initialization technique for generalized lloyd iteration[J].IEEE Signal Processing Letters,1994,1(10):144-146. 被引量:1
  • 9Tou J T,Ganzalez R C.Pattern recognition principles[M].Dyersburg,TIN,USA:Addison-Wesley,1975. 被引量:1
  • 10Christian Maueeri,Diem Ho.Clustering by kernel density[J].Computational Economics,2007,29(2):199-212. 被引量:1

共引文献1

同被引文献83

引证文献12

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部