期刊文献+

基于小波分析的亚像素配准算法

Subpixel registration method based on wavelet analysis
下载PDF
导出
摘要 在像素级配准的基础上,通过对多项式细分算法的改进,提出了一种基于小波分析的亚像素配准算法,并对配准算法的精度进行了分析研究。仿真结果表明,该算法效果良好,达到亚像素级精度。 Image registration is an important task in the field of computer vision and pattern recognition, and is applied in remote sensing, medical imaging and object indentifying of multi-sensor fusion. In this paper, a new subpixel registration method based on wavelet analysis was proposed by improving polynomial subdivision algorithm and pixel level registration. Furthermore, the precision of the method was also analyzed. The simulation results show that the methods can reach the precision of sub-pixel.
出处 《计算机应用》 CSCD 北大核心 2009年第B06期213-215,共3页 journal of Computer Applications
基金 国家863计划项目(2007AA01Z423)
关键词 小波分析 多项式细分 亚像素配准 wavelet analysis polynomial subdivision subpixel registration
  • 相关文献

参考文献8

二级参考文献33

  • 1吴晓波,钟先信,刘厚权,张启明.应用多项式插值函数提高面阵CCD尺寸测量的分辨力[J].仪器仪表学报,1996,17(2):154-159. 被引量:52
  • 2吴晓波,安文斗,杨钢.图像测量系统中的误差分析及提高测量精度的途径[J].光学精密工程,1997,5(1):133-144. 被引量:51
  • 3Yu Jinzhang. Optimal selection of segmentation algorithms based on performance evaluation [J]. Optical Eng,2000, 39(6): 1450. 被引量:1
  • 4Daubechies I. Ten Lecture on Wavelets [ M ] . Philadelphia:Society for Industrial and Applied Mathematics, 1992. 被引量:1
  • 5MaUat S G. A theory for multiresolution signal decomposition:The wavelet representation [ J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674--693. 被引量:1
  • 6Gans D. Transformations and Geometries [ M ] . New York:Appleton-Century-Crofts, 1969. 被引量:1
  • 7Arnar Mitiche, Aggarwal J K. Contour registration by shapespecific points for shape matching [ J ] . Computer Vision,Graphics, and Image Processing, 1983, 22(3): 396--408. 被引量:1
  • 8Li H, Manjunath B S. A contour-based approach to multisensor image registration[ J ]. IEEE Transactions on Image Processing,1995, 4(3): 320--334. 被引量:1
  • 9章毓晋.图像工程(下册)[M].北京:清华大学出版社,2000.251,254. 被引量:5
  • 10R M Haralick. Digital Step Edge from Zero Crossing of Second Directional Derivatives. IEEE Trans. PAMI.1984,6(1) :58- 68. 被引量:1

共引文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部