期刊文献+

改进的一致性数据融合算法及其应用 被引量:21

Improved Consensus Data Fusion Algorithm and Its Application
原文传递
导出
摘要 通过定义一种新的置信距离,提出了一种改进的一致性数据融合算法.该方法综合考虑各传感器测量精度的差异,并通过权系数来体现各传感器测量精度的差异对置信距离的影响.算例应用表明该方法能够有效地减小传感器发生扰动时数据融合结果的变化,具有较高的数据融合精度;与极大似然法和未改进的一致性数据融合算法比较,该方法融合精度更高、抗干扰能力更强.该改进算法已成功应用于煤自然发火实验温度数据的数据融合,取得了较满意的融合结果. An improved consensus data fusion algorithm was proposed in this paper by the definition of a new confidence distance. The differences of measured accuracy among different sensors were considered in this algorithm and the influence of measured accuracy among different sensors on confidence distance was reflected through weight factors. The fused results of examples show that the method has higher accuracy and can effectively reduce the variances of data fusion result when the disturbance of sensor occur. Compared with the maximum likelihood method and the existing ones, the improved algorithm can improve the precision, and strengthen the anti-interference capability. This improved algorithm has been applied to temperature data fusion of coal spontaneous combustion experiment successfully and achieved satisfactory results.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2009年第4期590-594,共5页 Journal of China University of Mining & Technology
基金 国家自然科学基金项目(50874088) 国家科技支撑计划项目(2007BAK29B03) 新世纪人才支持计划项目(NECT050874)
关键词 多传感器 数据融合 置信距离 煤自然发火 multi-sensor data fusion confidence distance coal spontaneous combustion
  • 相关文献

参考文献10

二级参考文献25

共引文献142

同被引文献198

引证文献21

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部