期刊文献+

奇异摄动问题向前差商迎风格式移动网格收敛性分析 被引量:1

Convergence Analysis for a Singularly Perturbed Problem Using the Forward Upwind Difference Scheme on Adaptive Meshes
下载PDF
导出
摘要 带有指数边界层的奇异摄动两点边值问题能在自适应网格上有效解出.这种网格是通过等分布一个区域上的控制函数而产生.选用对方程两阶导数为向前差商的迎风差分格式,对控制函数M(x)取值为1+(ε-1e-βx/ε)2,利用离散的格林函数可得不依赖于摄动参数ε的收敛结果,误差阶和加权误差导数的阶均为O(N-1). A singularly perturbed two-point boundary value problem with an exponential boundary layer is solved numerically by using an adaptive grid method. The mesh is constructed adaptively by equidistributing a monitor function over the domain of the problem. In this paper, we choose the forward upwind difference scheme and set M(x) =√1+(ε^-1e^βrε)^2. By using the discrete Green's function,a convergent result which is independent of the perturbation parameter is obtained. The order is O(N^-1 ). And the error bound for the weighted derivative is established. The order is also O( N^-1).
作者 刘莺 陈艳萍
出处 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2009年第2期8-11,共4页 Natural Science Journal of Xiangtan University
基金 教育部"新世纪优秀人才支持计划"(NCET-04-0776) 国家自然科学基金资助项目(10371104) 国家973项目"高性能科学计算研究"子课题(2005CB321703)
关键词 奇异摄动问题 迎风差分格式 等分布原理 一致收敛性 singular perturbation upwind difference scheme equidistribution principle uniform convergence
  • 相关文献

参考文献8

  • 1ANDREEV V B.The green function and a priori estimates of solutions of monotone three-point singularly perturbed finite-difference schemes[J].Differential Equations,2001,37(7):923-933. 被引量:1
  • 2BECKETT G,MACKENZIE J A.Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem[J].Appl Numer Math,2000,35:87-109. 被引量:1
  • 3CHEN Y.Uniform convergence analysis of finite difference approximations for singular perturbation problems on an adapted grid[J].Advances in Computational Mathematics,2006,24:197-212. 被引量:1
  • 4CHEN Y.Uniform pointwise convergence for a singularly perturbed problem using arc-length equidistribution[J].Journal of Computational and Applied Mathematics,2003,159:25-34. 被引量:1
  • 5KELLOGG R B,TSAN A.Analysis of some difference approximations for a singular perturbation problem without turning points[J].Math Comput,1978,32:1 025-1 039. 被引量:1
  • 6LIN T.Analysis of an upwind difference scheme on arbitrary meshes for convection-diffusion problems[J].GAMM-Mitteilungen,2002,25(1-2):47-86. 被引量:1
  • 7MACKENZIE J A.Uniform convergence analysis of an upwind finite-difference approximation of a convection-diffusion boundary value problem on an adaptive grid[J].IMA J Numer Anal,1999,19:233-249. 被引量:1
  • 8杨继明,陈艳萍.一类奇异摄动对流扩散边值问题的移动网格方法[J].湘潭大学自然科学学报,2004,26(3):24-29. 被引量:12

二级参考文献9

  • 1Beckett G,Mackenzie J A.Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem[J].Appl Numer Math,2000,35:87-109. 被引量:1
  • 2Yanping Chen.Uniform convergence analysis of finite difference approximations for singularly perturbed problems on an adapted grid[J]. Submitted to Advances in Computational Mathematics. 被引量:1
  • 3Yanping Chen.Uniform pointwise convergence for a singularly perturbed problem using arc-length equidistribution[J].Journal of Computational and Applied Mathematics.2003,159(1):25-34. 被引量:1
  • 4KOPTEVA N.Maximum norm a posteriori error estimates for a one-dimensional convection-diffusion problem[J].SIAM J Numer Anal,2001,39:423-441. 被引量:1
  • 5NATALIA KOPTEVA,MARTIN STYNES. A robust adaptive method for a quasi-linear one dimensional convection-diffusion problem[J]. SIAM J Numer Anal,2001,39(4):1 446-1 467. 被引量:1
  • 6Linss T.Uniforming pointwise convergence of finite difference schemes using grid equidistribution[J]. Computing,2001,66:27-39. 被引量:1
  • 7Miller J J H,Riordan E O,Shishkin G I.Solution of singularly perturbed problems with ε-uniform numerical methods-Introduction to the theory of linear problems in one & two dimensions[M].Singapore:World Scientific,1996. 被引量:1
  • 8Qiu Y,Sloan D M.Analysis of difference approximations to a singularly perturbed two-point boundary value problem on an adaptively generated grid[J].J Comput Appl Math,1999,101:1-25. 被引量:1
  • 9Qiu Y,Sloan D M,Tang T.Numerical solution of a singularly perturbed two-point boundary value problem using equidistribution: analysis of convergence[J]. J Comput Appl Math,2000,116:121-143. 被引量:1

共引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部