期刊文献+

周期性误告警去除方法研究 被引量:4

Research on the Method of Reducing False Positives with Periodicity
下载PDF
导出
摘要 网络入侵检测系统是发现网络安全事件的有力工具.然而在实际的应用中它会产生大量的冗余告警,极大地增加了实时安全分析的难度.提出具有周期性告警是误告警的思想,并通过实际周期的寻找和确定来消除相关冗余告警.算法在中国教育科研网的一个分支网络测试,实验中能够实时去除90%以上的告警,同时对网络中部分周期性告警产生的原因也进行了分析,分析发现这些告警的确是误告警. NIDS (Network Intrusion Detection System) is an effective device to discover network security events. Nevertheless it will produce a large number of false positives in real network, which makes security analysis in real-time very difficult. This paper puts forward a new idea that alerts with periodicity are false positives, and filters relevant redundant alerts by the discovery and determination of periodicity. This algorithm has been tested in a branch network of CERNET (China Education and Research Network), and over 90% alerts can be removed in this way. Meanwhile some root causes that trigger periodic alerts can be discovered, it can be validated that these alerts are false positives indeed.
出处 《小型微型计算机系统》 CSCD 北大核心 2009年第7期1336-1340,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60573120)资助
关键词 周期分析 误告警 入侵检测 重尾分布 period analysis false positives intrusion detection heavy-tailed distribution
  • 相关文献

参考文献6

  • 1Klaus Julisch. Clustering intrusion detection alarms to support root cause analysis[C]. ACM Transactions on Information and System Security (TISSEC), 2003,6(4) :443-471. 被引量:1
  • 2Hideki Koike, Kazuhiro Ohno. SnortView: visualization system of snort logs. CCS workshop on visualization for computer seeurity[D]. Washington DC,USA, 2004,143-147. 被引量:1
  • 3Tadeusz Pietraszek, Axel Tanner. Data mining and machine learning-towards reducing false positives in intrusion detection [R]. Information Security Technical Report, 2005,10(3). 被引量:1
  • 4Jouni Viinikka, Herv'e Debar, Ludovic M' e, et al. Time series modeling for IDS alert management[M]. ASIACCS, Taipei Taiwan,2006,102-113. 被引量:1
  • 5Allen R, Mills D. Signal analysis: time, frequency, scale, and strueture[M]. Wiley, New York, 2004. 被引量:1
  • 6Wang Xin. Modeling and predicting the self-similar network traffic[D]. Tsinghua University, 2003. 被引量:1

同被引文献33

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部