摘要
通过优序列方法,建立了Euler级数,即反函数的幂级数的收敛性.而且,我们发现Euler级数的系数和具有n个元素的Schroder系的个数之间的联系,以及Euler级数收敛半径的确切下界可通过相应的指母函数的收敛半径得到.
The convergence of Euler's series (the power series of an inverse function) isestablished by majorant method. Moreover, we find that the sum of the coefficients of theseries has a close relation with the number of Schroder system with n element and theexact lower bound of convergence radius of Euler's series can be derived from the value ofconvergence radius of the corresponding exponential generating function.
出处
《应用数学学报》
CSCD
北大核心
1998年第3期359-362,共4页
Acta Mathematicae Applicatae Sinica
基金
国家基础研究攀登计划资助
浙江省自然科学基金
关键词
收敛半径
指母函数
欧拉级数
收敛性
组合学
Euler's Series, convergence radius, majorizing series, Schroder system,exponential generating function