摘要
本文首先证明了一类新的光滑模与K-泛函之间的等价性,然后给出了单形上的多元Meyer-Konig和Zeller算子逼近的正、逆定理,最后证明了该算子逼近的特征刻划定理.
In this paper, we give the equivalent theorem about a new kind of modulus andK-functionals introduced by the author, then we give the direct and converse approximationtheorem by Meyer-Konig and Zeller operators on simplex, finally we give these operatorsapproximation characteristic theorem.
出处
《应用数学学报》
CSCD
北大核心
1998年第3期321-333,共13页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金
浙江省及杭州大学科学基金