期刊文献+

应用乘积季节ARIMA模型的话务量预测及结果分析 被引量:5

Research on traffic prediction and result analysis of using multiplicative seasonal autoregressive integrated moving average
下载PDF
导出
摘要 话务量预测功能对于电信网络规划建设、网络优化意义重大。深入研究了某省某移动网络运营商的多年的话务量数据,利用自相关函数对其周期性和趋势性方面的规律进行了探测,并在此基础上提出应用乘积季节ARIMA模型进行建模和预测的方案。进行了2008年7月到12月的全省及各地区月日均话务量的预测,并与网络实际运营结果进行了比较。所应用方法的一步预测值平均绝对百分比误差MAPE为1.382%,6步预测的MAPE值均在6%以内,是精确度很高的预测;对预测误差较大的某地区进行了原因分析,证明了模型的正确性,并为实际预测应用中经常遇到的预测误差偏大的问题提供了一种有效的分析思路和方法。 Traffic prediction is of significant importance for telecommunication network construction plan and network optimization.The traffic series for a province of a mobile network operator is studied and the regularities about trend and season are explored using autocorrelation function.Based on the characteristics exhibited in the traffic series,multiplicative seasonal Autoregressive Integrated Moving Average model(ARIMA) is employed to make traffic series prediction.Daily traffic per month for the province and for every region from July to December in 2008 is forecasted,and it is compared with the actual operation data.The Mean Absolute Percentage Error(MAPE) for one-step ahead prediction is 1.382%,and MAPE for the 6 steps are all less than 6%.The prediction result is of high precision.Furthermore,the cause for the large prediction error in 2 regions is analyzed,and the appropriateness of the model is testified on the opposite aspect.This paper also provides an effective method by using correlation coefficients for analyzing the reason for large prediction errors which often happen in time series prediction applications.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第20期99-102,共4页 Computer Engineering and Applications
基金 国家"十一五"科技支撑计划No.2006BAH02A03~~
关键词 自回归整合滑动平均(ARIMA) 乘积季节ARIMA 自相关函数 相关系数 话务量 Autoregressive Integrated Moving Average (ARIMA) muhiplicative seasonal Autoregressive Integrated Moving Average autocorrelation function correlation coefficient traffic
  • 相关文献

参考文献7

  • 1Chen D,York M.Neural network based approaches to very short term load prediction[C]//2008 IEEE Power and Energy Society General Meeting, Chicago, U S, 2008 : 1-8. 被引量:1
  • 2Muller K R,Smola A.Prediction time series with support vector machines[C]//Proceedings of International Conference on Artificial Neural Networks, Lausanne, Switzerland. 被引量:1
  • 3Cao L J,Tay F E H.Support vector machine with adaptive parameters in financial time series forecasting[J].IEEE Transactions on Signal Processing, 2004,52 ( 8 ) : 1506-1518. 被引量:1
  • 4Box G E P,Jenkins G M,Reinsel G C.Time series analysis:Forecasting and control[M].Beijing:Posts & Telecom Press,2005. 被引量:1
  • 5Akaike H A.New look at the statistical model identification[J]. IEEE Trans on Automatic Control,1974,AC-19:716-723. 被引量:1
  • 6章敬东,刘小辉,邓飞其,刘永清.灰色神经网络组合算法在复杂非线性预测中的应用[J].计算机工程与应用,2003,39(12):56-58. 被引量:13
  • 7王振龙,胡永宏主编..应用时间序列分析[M].北京:科学出版社,2007:250.

二级参考文献2

  • 1[美]BART KOSKO.Gray-Fuzzy Engineering[M].PRENTICE HALL, 1999:164-190. 被引量:1
  • 2Junying Zhang.Binary Feedforward Neural Networks[M].Xidian Universlty Publish House,2000:57-79. 被引量:1

共引文献12

同被引文献35

  • 1肖健华,林健,刘晋.基于SVR的区域经济短期预测模型[J].系统仿真学报,2005,17(12):2849-2851. 被引量:10
  • 2李素梅,张延炘,常胜江.用支持向量机网络实现VBR视频通信量的预测[J].电子学报,2006,34(2):210-213. 被引量:2
  • 3中国电信计费模型(CTG—BM3.0—06):《网管与监控》分册V1.0.ppt,2009年10月:59—62. 被引量:1
  • 4Harvey A C.Forecasting,structural time series models and the kal-man filter.Cambridge,UK:Cambridge University Press,1991. 被引量:1
  • 5Box G E P,Jenkins G M,Reinsel G C.Time series analysis Forecas-ting and control.3rd ed New Jersey:Prentice-Hall,1994. 被引量:1
  • 6YING Xie,HUA Zheng.Water supply forecasting based on de-veloped LS-SVM[C]I/3rd IEEE Conference on,Singapore,2008:2228-2233. 被引量:1
  • 7张贤达.现代信号处理[M].北京:清华大学出版社,2010. 被引量:1
  • 8格雷特,李洪成.时间序列预测实践教程[M].北京:清华大学出版社,2012. 被引量:5
  • 9张营.基于线性回归分析的话务预测电信收入的研究[D].广州:中山大学,2009. 被引量:1
  • 10蒋建忠.时间序列分析在移动话务量预测中的应用[D].北京:北京邮电大学,2005. 被引量:1

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部