摘要
This brief paper reports a hybrid algorithm we developed recently to solve the global optimization problems of multimodal functions, by combining the advantages of two powerful population-based metaheuristics differential evolution (DE) and particle swarm optimization (PSO). In the hybrid denoted by DEPSO, each individual in one generation chooses its evolution method, DE or PSO, in a statistical learning way. The choice depends on the relative success ratio of the two methods in a previous learning period. The proposed DEPSO is compared with its PSO and DE parents, two advanced DE variants one of which is suggested by the originators of DE, two advanced PSO variants one of which is acknowledged as a recent standard by PSO community, and also a previous DEPSO. Benchmark tests demonstrate that the DEPSO is more competent for the global optimization of multimodal functions due to its high optimization quality.
This brief paper reports a hybrid algorithm we developed recently to solve the global optimization problems of multimodal functions, by combining the advantages of two powerful population-based metaheuristics differential evolution (DE) and particle swarm optimization (PSO). In the hybrid denoted by DEPSO, each individual in one generation chooses its evolution method, DE or PSO, in a statistical learning way. The choice depends on the relative success ratio of the two methods in a previous learning period. The proposed DEPSO is compared with its PSO and DE parents, two advanced DE variants one of which is suggested by the originators of DE, two advanced PSO variants one of which is acknowledged as a recent standard by PSO community, and also a previous DEPSO. Benchmark tests demonstrate that the DEPSO is more competent for the global optimization of multimodal functions due to its high optimization quality.
作者
CHEN Jie1,2,XIN Bin1,2,PENG ZhiHong1,2 & PAN Feng1,2 1 School of Automatic Control,Beijing Institute of Technology,Beijing 100081,China
2 Key Laboratory of Complex System Intelligent Control and Decision,Ministry of Education,Beijing 100081,China
基金
Supported by the National Natural Science Foundation of China (Grant No. 60374069)
the Foundation of the Key Laboratory of Complex Systems and Intelligent Science, Institute of Automation, Chinese Academy of Sciences (Grant No. 20060104)