期刊文献+

谐振区雷达目标识别的模块化神经网络方法 被引量:1

RADAR TARGET RECOGNITION BASED ON MODULAR NEURAL NETWORKS
下载PDF
导出
摘要 本文研究了基于模块化神经网络的谐振区雷达目标识别方法,该方法先用BP网络进行波形预测,再用最大后验概率准则或修正最小平方误差准则进行分类。通过计算机模拟,证实了该方法有较好的识别性能,且对信号留数变化,即目标的姿态变化不敏感。另外,该方法还具有实现简单,结构扩展方便等优点。 A new method for radar target recognition based on modular neural networks is reported in this paper. In this method, the response from an unknown target is first sent to several waveform predicators that are some BP neural networks trained by responses from known targets respectively. Then the predicator errors are inputted to a classifier using the rule of maximum a posteriori or the rule of modified minimum squared errors. The simulation on PC computer shows that the new method has a good performance on radar target recognition. The method also has other advantages such as easy realization, clear structure and easy expansion.
出处 《电子科学学刊》 CSCD 1998年第4期440-444,共5页
关键词 模块化 神经网络 目标识别 BP网络 雷达系统 Modular, Neural network, Target recognition, BP network
  • 相关文献

参考文献2

  • 1姜文利,博士学位论文,1997年 被引量:1
  • 2Li H,Proc IEEE Int Geosci Remote Sens Symp.Vol.2,1993年,713页 被引量:1

同被引文献9

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部