期刊文献+

函数分段有理二次Bézier插值与逼近

The Segment Rational Quadratic Bézier Interpolation and Approximation to Functions
下载PDF
导出
摘要 依据几何特征对函数进行合理分段,定义了函数的分段三角形凸包,给出了控制多边形的确定方案,详细地讨论了函数的分段有理二次Bézier插值算法.定义了一种便于计算的新型误差,在此误差意义之下,插值算法的精度高于已有的逼近算法.数值实验结果表明了算法的可行性和有效性. Based on the proper segmentation of non-linear functions, the triangle convex hull of function segments is given. A scheme of control polygon determination by the tangent of the endpoints of the segment intervals is provided. The algorithm of segment rational quadratic Bézier interpolation of non-linear functions is discussed in details. Moreover, a new kind of error is defined so as to simplify the computation. In the sense of the new definition of error, the precision of the interpolation algorithm is better than that of traditional approximate one, and the feasibility and validity of the algorithm is demonstrated by the numerical experiment.
作者 梁锡坤 胡斌
出处 《应用数学与计算数学学报》 2009年第1期19-26,共8页 Communication on Applied Mathematics and Computation
基金 安徽省自然科学基金(03046102) 浙江省教育厅科研基金(20050718)资助
关键词 函数分段 三角形凸包 Bézier插值 误差估计 function segmentation, triangle convex hull, Bézier interpolation, error estimation
  • 相关文献

参考文献10

  • 1Wang Nengchao.Concise tutorial of computational approach[M].Beijing:High Educational Press,2004. 被引量:1
  • 2Wang Renhong.Numerical approximation[M].Beijing:High Educational Press,1999. 被引量:1
  • 3Yang Fengxiang,Zhai Ruicai,Sun Jing.Numerical Analysis[M].Tianjin:Tianjin University Press,1996. 被引量:1
  • 4Zhong Xinxiong.Modeling Technology of Free Formed Curves and Surfaces[M].Beijing:Beijing Science Press,2000. 被引量:1
  • 5Shi Fazhong.Computer Aided Geometric Design an Non Uniform Rational Basic Spline[M].Beijing:Higher Educational Press,2001. 被引量:1
  • 6Les Piegl,Wayne Tiller,The NURBS Book[M].New York:Springer,1997. 被引量:1
  • 7Gerald Farin.Curves and Surfaces for Computer Aided Geometric Design[M].New York:ACADEMIC PRESS,2000. 被引量:1
  • 8Gao Xiaoshan,Li Ming.Rational quadratic approximation to real algebraic curves[J].Com-puter Aided Geometric Design,2004,21:805-828. 被引量:1
  • 9Farin G.,Worsey A.J.Tessellation of curved surfaces under highly varying transformations [R].In:Proc.EUROGRAPHICS 1991,91:385-397. 被引量:1
  • 10Luo Jiahong.Introduction Theory of Matrix Analysis[M].Guangdong:The Press of South-China University of Science and Technology,2000. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部