期刊文献+

非光滑(F,ρ,θ)-d一致不变凸广义分式规划的最优性条件 被引量:1

Optimality criteria for a class of generalized fractional programming under nonsmooth(F,ρ,θ)-d-univexity
下载PDF
导出
摘要 结合F-凸、η-不变凸及d一致不变凸的概念,给出了非光滑(F,ρ,θ)-d一致不变凸的概念;就一类在凸集C上目标函数为Lipschitz连续的带有可微不等式约束的广义分式规划,在广义Kuhn-Tucker约束品性或广义Arrow-Hurwicz-Uzawa约束品性的条件下,研究了广义分式规划的最优性必要条件;并利用非光滑(F,ρ,θ)-d一致不变凸得到了该规划的最优性充分条件. Combining the definition of F-convexity, η-invexity and d-univexity, the definition of nonsmooth (F,ρ,θ)-d-univexity was introduced. The Kuhn-Tucker type necessary optimality conditions were given for a class of generalized fractional programming of minimizing a local Lipschitz function subject to a set of differentiable nonlinear inequalities on a convex subset C of R, under the generalized Kuhn-Tucker constraint qualifi cation or the generalized Arrow-Hurwicz-Uzawa constraint qualification. Finally, the sufficient optimality condition were proposed under nonsmooth (F,ρ,θ)-d-univexity.
作者 童子双
出处 《浙江师范大学学报(自然科学版)》 CAS 2009年第3期262-266,共5页 Journal of Zhejiang Normal University:Natural Sciences
基金 浙江省教育厅科研项目(20071063)
关键词 广义分式规划 最优性必要条件 最优性充分条件 非光滑(F ρ θ)-d一致不变凸 generalized fractional programming necessary optimality conditions sufficient optimality condition nonsmooth (F,ρ,θ)-d-univexity
  • 相关文献

参考文献10

  • 1Liu J C,Wu C S.On minimax fractional optimality conditions,with invexity[J].Journal Mathenmatical Analysis and Applications,1998,219(1):21-35. 被引量:1
  • 2Liu J C,Wu C S.On minimax fractional optimality conditions with (F,ρ)-convexity[J].Journal Mathematical Analysis and Applications,1998,219(1):36-51. 被引量:1
  • 3Liang Zhi'an,Shi Zhenwei.Optimality conditions and duality for a minimax fractional programming with generalized convexity[J].Journal Mathematical Analysis and Applications,2003,277 (2):474-488. 被引量:1
  • 4Clarke F H.Optimization and Nonsmooth Analysis[M].New York:Wiley,1983. 被引量:1
  • 5Zheng Xiaojin,Cheng Li.Minimax fractional programming under nonsmouth generalized (F,ρ,θ)-d-univexity[J].Journal Mathematical Analy-sis and Applications,2007,328 (1):676-689. 被引量:1
  • 6Hanson Morgan A,Mond B.Further generalization of convexity in mathematical programming[J].J Inform Optim Sci,1982,3(1):25-32. 被引量:1
  • 7Jeyakumar V.Strong and weak invexity in mathematical programming[J].Methods of Operations Research,1985,55 (1):109-125. 被引量:1
  • 8Mishra S K,Wang S Y,Lai K K.Nondifferentiable multiobjective programming under generalized d-univexity[J].European Journal of Opera-tional Research,2005,160(1):218-226. 被引量:1
  • 9Zheng Xiaojin.Constraint qualification in a general class of nondifferentiable mathematical programming problems[J].Computers and Mathe-matics with Applications,2007,53:21-27. 被引量:1
  • 10Xu Zengkun.Constraint qualifications in a class of nondifferentiable mathematical programming problems[J].Journal Mathematical Analysis and Applications,2005,302 (2),282-290. 被引量:1

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部