期刊文献+

连通微分分次代数的整体维数 被引量:1

Global Dimension for Connected Differential Graded Algebras
下载PDF
导出
摘要 首次把有理同伦论中的同伦不变量-锥长度(cone length)引入到微分分次(简记为DG)同调代数中,定义了连通DG代数上DG模的锥长度。连通DG代数A的左(右)整体维数定义为所有DG A-模(A^(op)-模)的锥长度的上确界。在一些特殊情形下,发现连通DG代数A的左(右)整体维数与H(A)的整体维数有着密切的关系。任意一个连通分次代数,如果将它视为微分为0的连通DG代数,其左(右)整体维数与其作为连通分次代数的整体维数是一致的。因此该定义是连通分次代数整体维数的一种推广形式。证明A的整体维数是三角范畴D(A)以及D^c(A)的维数的一个上界。当A是正则DG代数时,给出了A的左(右)整体维数的一个有限上界。 This paper introduces a new invariant, which is called cone length, for DG modules over a connected DG algebra A. The supremum of cone lengthes of all DG Amodules (respectively, DG A^op-modules) is defined to be the left (respectively, right) global dimension of A, which is a kind of DG generalization of the global dimension of connected graded algebras. In some cases, the left (right) global dimension of A has a close relation with the global dimension of H(A). The global dimension of A is proved to be an upper bound of the dimension of the triangulated categories D(A) and De(A). When the connected DG algebra A is regular, a finite upper bound of the left (respectively, right) global dimension of A is discovered.
作者 毛雪峰
出处 《数学年刊(A辑)》 CSCD 北大核心 2009年第3期359-376,共18页 Chinese Annals of Mathematics
关键词 连通微分分次代数 微分分次代数 正则微分分次代数 整体维数 紧对象 锥长度 Connected graded algebra, Differential graded algebra, Regular DG algebra, Global dimension, Compact object, Cone length
  • 相关文献

参考文献24

  • 1Auslander M., Global dimension [J], Nagoya Math. J., 1955, 9:67-77. 被引量:1
  • 2Eilenberg S., Nagao H. and Nakayama T., On the dimension of modules and algebras [J], Nagoya Math. J., 1956, 10:87-95. 被引量:1
  • 3Kaplansky I., On the dimension of modules and algebras [J], Nagoya Math. J., 1958, 13:85-88. 被引量:1
  • 4Apassov D., Complexes and Differential Graded Modules [D], Lund University, 1999. 被引量:1
  • 5Frankild A. and Jφrgensen P., Homological identities for differential graded algebras [J], J. Algebra, 2003, 265:114-136. 被引量:1
  • 6Frankild A. and Jφrgensen P., Homological properties of cochain differential graded algebras [ED/OL], http://arxiv.org/abc/math.RA/08011581. 被引量:1
  • 7Yekutieli A. and Zhang J. J., Rigid complexes via DG algebras [J], Trans. Amer. Math. Soc., 2008, 360(6):3211-3248. 被引量:1
  • 8Jφrgensen P., Amplitude inequalities for differential graded modules [ED/OL], http://arXiv.org/abs/math. RA/0601416. 被引量:1
  • 9Avramov L. L., Foxby H. V. and Halperin S., Differential Graded Homological Algebra [R], 2005, preprint. 被引量:1
  • 10Felix Y., Halperin S. and Thomas J. C., Rational Homotopy Theory [M], Grad. Texts in Math, 205, Berlin: Springer-Verlag, 2000. 被引量:1

同被引文献16

  • 1MAO XueFeng,WU QuanShui.Compact DG modules and Gorenstein DG algebras[J].Science China Mathematics,2009,52(4):648-676. 被引量:10
  • 2R. Bezrukavnikov.Koszul DG-algebras arising from configuration spaces[J]. Geometric and Functional Analysis . 1994 (2) 被引量:1
  • 3Keller B.Deriving DG categories. Ann Sci cole Norm Sup . 1994 被引量:1
  • 4J-rgensen P.Linear free resolution over non-commutative graded algebras. Compositio Mathematica . 2004 被引量:1
  • 5Avramov L L,Buchweitz R O,Iyengar S B, et al.Homology of perfect complexes. Advances in Mathematics . 2010 被引量:1
  • 6D. Shklyarov.On serre duality for compact homologically smooth DG algebras. . 被引量:1
  • 7Mao X F,Wu Q S.Homological invariants for connected DG algebras. Communications in Algebra . 2008 被引量:1
  • 8Artin,M.,Shelter,W.Graded algebras of global dimension 3. Advances in Mathematics . 1987 被引量:1
  • 9Avramov,L. L,Foxby,H. B,Halperin,S.Di eretial Graded Homological Algebra. . 被引量:1
  • 10Shklyarov D.Hirzebruch-Riemann-Roch theorem for DG algebras. http://arxiv:math.KT/0710.1937 v1 . 2007 被引量:1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部