摘要
首次把有理同伦论中的同伦不变量-锥长度(cone length)引入到微分分次(简记为DG)同调代数中,定义了连通DG代数上DG模的锥长度。连通DG代数A的左(右)整体维数定义为所有DG A-模(A^(op)-模)的锥长度的上确界。在一些特殊情形下,发现连通DG代数A的左(右)整体维数与H(A)的整体维数有着密切的关系。任意一个连通分次代数,如果将它视为微分为0的连通DG代数,其左(右)整体维数与其作为连通分次代数的整体维数是一致的。因此该定义是连通分次代数整体维数的一种推广形式。证明A的整体维数是三角范畴D(A)以及D^c(A)的维数的一个上界。当A是正则DG代数时,给出了A的左(右)整体维数的一个有限上界。
This paper introduces a new invariant, which is called cone length, for DG modules over a connected DG algebra A. The supremum of cone lengthes of all DG Amodules (respectively, DG A^op-modules) is defined to be the left (respectively, right) global dimension of A, which is a kind of DG generalization of the global dimension of connected graded algebras. In some cases, the left (right) global dimension of A has a close relation with the global dimension of H(A). The global dimension of A is proved to be an upper bound of the dimension of the triangulated categories D(A) and De(A). When the connected DG algebra A is regular, a finite upper bound of the left (respectively, right) global dimension of A is discovered.
出处
《数学年刊(A辑)》
CSCD
北大核心
2009年第3期359-376,共18页
Chinese Annals of Mathematics
关键词
连通微分分次代数
微分分次代数
正则微分分次代数
整体维数
紧对象
锥长度
Connected graded algebra, Differential graded algebra, Regular DG algebra, Global dimension, Compact object, Cone length