期刊文献+

新蚁群算法在烷基酚类化合物的QSAR中变量选择的研究 被引量:2

Study of variable options based on modified ant colony algorithm in QSAR of Alkyl phenol compounds
原文传递
导出
摘要 采用量子化学从头算方法在HF/6-311+G(d)水平上计算8种烷基酚类化合物的分子结构描述符,选用修正过的C_p统计量为目标函和新蚁群优化算法,于烷基酚类化合物的定量结构——活性相关研究中的变量选择,建立烷基酚类化合物的生物降解速率常数与其量化参数之间的QSAR模型。结果表明,新蚁群优化算法用于定量构效中的变量选择比较简单,而且需要调节的参数少,是变量选择的有用方法,且应用量子化学结构参数建模的相关系数R =0.994,与文献中R=0.982相比相关性更好。 The quantum chemical descriptors of Alkylphenols were obtained at the HF/6-311 + G (d) level with the ab initio method of quantum chemistry. The modified Cp statistics was chose to be the objective function, QSAR models were obtained for the biodegradation rate constant of Alkylphenols based on improved ant colony algorithm. The results showed that the modified ant colony method was a useful for variable selection. The regulative parameter was less and the algorithm was simpler. The correlation coefficient of the QSAR model based on some quantum chemical descriptors was 0. 994, which is better than the correlation coefficient of 0. 982 mentioned in the literature.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2009年第6期803-806,共4页 Computers and Applied Chemistry
基金 广东省自然科学基金资助项目(05300189) 广东省科技计划资助项目(2007A020100001-13)
关键词 烷基酚类化合物 变量选择 新蚁群算法 量子化学参数 定量结构一活性相关 Alkylphenol compounds, quantum chemistry parameters, variable selection, improved ant colony optimization, QSAR
  • 相关文献

参考文献3

二级参考文献26

共引文献23

同被引文献48

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部