期刊文献+

非线性正交各向异性弹性材料的本构方程及其势函数 被引量:4

Nonlinear Constitutive Equation and Potential Function of Orthogonal Aeolotropy Elastic Materials
下载PDF
导出
摘要 研究了非线性Green弹性材料弹性张量独立分量,归纳推导出各向异性Green弹性材料、具有一个对称面Green弹性材料、正交各向异性非线性弹性材料独立的弹性常数个数。从张量函数出发,用含有高阶弹性张量的张量多项式,推导出三阶非线性正交各向异性Green弹性材料本构方程及其势函数。并将本构方程及其势函数用张量不变量,标量不变量表示。证明了方程是完备的,不可约的,满足张量函数表示定理。详细研究Green弹性材料势函数存在的充分和必要条件,给出并证明了具有普适性的势函数存在定理。 The independent components of elastic tensor in nonlinear Green elastic materials were studied. The numbers of independent elastic constants were derived for aeolotropy Green elastic materials, Green elastic materials with a plane of symmetry and three order nonlinear orthogonal aeolotropy elastic materials. From tensor function, the constitutive equations and potential function of three order orthogonal aeolotropy nonlinear Green elastic materials were derived by tensor polynomial with high order elasticity tensor. The constitutive equations and the potential functions can be expressed as tensor invariant and scalar invariant. The equations are proved complete and irreducible, and satisfy the law of tensor function expressions. The adequate and necessary conditions under which elastic material potential funtions exist were fully studied and the general existing principle of potential functions are presented and proved.
作者 李忱 杨桂通
出处 《力学季刊》 CSCD 北大核心 2009年第2期169-175,共7页 Chinese Quarterly of Mechanics
基金 山西省自然科学基金资助项目(2008011007)
关键词 非线性 正交各向异性 本构方程 势函数 不变量 nonlinear orthogonal aeolotropy constitutive equations potential function invariant
  • 相关文献

参考文献13

  • 1Rivlin R S.Large elastic deformations of isotropic materials,IV.Further developments of the general theory[J].Phil Trans Roy Soc Lond,1948,A241:379-397. 被引量:1
  • 2Rivlin R S.The hydrodynamics of non-Newtonian fluids:I[J].Proc Roy Soc Lond,1948,A193:260-281. 被引量:1
  • 3Reiner M.A mathematical theory of dilatancy[J].Amer J Math,1945,67:350-362. 被引量:1
  • 4Reiner M.Elasticity beyond the elastic limit[J].Amer J Math,1948,70:433-446. 被引量:1
  • 5Rivlin R S.Further remarks on the stress-deformation relations for isotropic materials[J].Ratl Mech Anal,1955,4:681-702. 被引量:1
  • 6Spencer A J M.Theory of invariants[C].In:Eringen A C (ed).Continuum Physics,Vol I,Academic Press,New York,1971,239-353. 被引量:1
  • 7Spencer A J M.Applications of tensor functions in solid mechanics[C].CISM Courses and Lectures No.292,Springer-Verlag,Berlin,1987,141-201. 被引量:1
  • 8方辉宇.张量函数的表示理论──本构方程统一不变性研究[J].力学进展,1996,26(1):114-137. 被引量:8
  • 9Pipkin A C,Wineman A S.Material symmetry restrictions on non-polynomial constitutive equations[J].Arch Ratl Mech Anal,1963,12:420-426. 被引量:1
  • 10Wineman A S,Pipkin A C.Material symmetry restrictions on constitutive equations[J].Arch Ratl Mech Ana1,1964,17:184-214. 被引量:1

二级参考文献11

  • 1[1]Mooney M. A theory of large elastic deformation[J]. App Phys, 1940, 11:582~592. 被引量:1
  • 2[2]Rivlin R S. A uniqueness theorem in the theory of highly-elastic materials[J]. Pro Cambridge Phil Soc, 1948, 44:595~597. 被引量:1
  • 3[3]Treloar L R G. The physics of rubber elasticity[M]. Third Edition. Oxford: Clarendon Press,1975. 被引量:1
  • 4[4]Yeoh O H. Characterization of elastic properties of carbon-black-filled rubber vulcanizates[J]. Rubber Chemistry and Technology, 1990, 63:792~805. 被引量:1
  • 5[5]Arruda E M, Boyce M C. A Three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J]. Mech Phys Solids, 1993,41(2):389~412. 被引量:1
  • 6[6]Fung Y C, Liu S Q. Determination of the mechanical properties of the different layers of blood vessels in vivo[J]. Proc Natl Acad Sci, 1992, 95(3):2169~2173. 被引量:1
  • 7[7]Zhao Guoxing, Wang Shoumei. New constitutive relationship of incompressible hyperelasticity[J]. Journal of Aeronautics, 1998, 11(1):15~22. 被引量:1
  • 8[8]Wang Shoumei, Zhu Wangkun. On polynomial constitutive laws for nonlinear elastic materials[A].In:Gong Yaonan, Liu Peiqing,eds. Proceedings of the Third Asian-Pacific Conference on Aerospace Technology and Science[C]. Kunming: Beijing University of Aeronautics and Astronautics, 2000.313~318. 被引量:1
  • 9[9]Reiner M. Elasticity beyond the elastic limit[J]. Amer J Math, 1948,70:433~466. 被引量:1
  • 10[10]Treloar L R G. Stress-strain data for vulcanized rubber under various types of deformation[J]. Trans Faraday Soc, 1944, 40:59. 被引量:1

共引文献8

同被引文献34

  • 1方辉宇.张量函数的表示理论──本构方程统一不变性研究[J].力学进展,1996,26(1):114-137. 被引量:8
  • 2Rivlin R S. Large elastic deformations of isotropic materials, IV. Further developments of the general theory[J]. Phil Trans Roy Soc Lond, 1948,A241:379- 397. 被引量:1
  • 3Rivlin R S. The hydrodynamics of no n-Newtonian fluids:I [J]. Proc Roy Soc Lond, 1948, A 193: 260--281. 被引量:1
  • 4Reiner M. A mathematical theory of dilatancy[J]. Amer J Math, 1945,67 : 350-- 362. 被引量:1
  • 5Reiner M. Elasticity beyond the elastic limit[J]. Amer J Math,1948,70: 433--446. 被引量:1
  • 6Rivlin R S. Further remarks on the stress-deformation relations for isotropic materials[J].Ratl Mech Anal, 1955,4:681- 702. 被引量:1
  • 7Spencer A J M. Theory of invariants[A]. In: Eringen A C (ed). Continuum Physics, Vol I[M]. Academic Press, New York,1971:239 - 353. 被引量:1
  • 8Spencer A J M. In: Boehler J P (ed). Applications of Tensor Functions in Solid Mechanics[C]. CISM Courses and Lectures No. 292, Springer-Verlag, Berlin, 1987 : 141--201. 被引量:1
  • 9Pipkin A C, Wineman A S. Material symmetry restrictions on non-Polynomial constitutive equations[J]. Arch Ratl Mech Anal, 1963,12: 420 -426. 被引量:1
  • 10Wineman A S, Pipkin A C. Material symmetry restrictions on constitutive equations[J]. Arch Ratl Mech Anal, 1964,17:184--214. 被引量:1

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部