期刊文献+

椭圆曲线上的链式验证签名 被引量:1

Chain Verification Signature Based on Elliptic Curve
下载PDF
导出
摘要 首先,为赋予签名验证者不同的权限,基于椭圆曲线密码算法,提出了一种链式验证签名方案.只有经过链式验证授权组中的成员依次授权之后,签名验证者才能验证签名的有效性.然后,分析了所给签名方案的安全性,链式验证授权组中的任何一个成员都没有权利验证签名的有效性;同时,该方案可以方便地增加或删除链式验证授权者,并在链式验证授权者或签名验证者泄漏子秘密时,及时进行维护.最后,分析了所提方案的运算复杂度,证明所给方案具有较高的安全性和效率. Based on elliptic curve cryptosystem, a new chain verification signature scheme is proposed, the verifier doesn't verify the validity of the signature until authorized in turn by members of the chain verification authorize group. Authorizers can be added or deleted conveniently. In addition, the proposed scheme can be protected in time when sub-secrets are leaked by verifiers or authorizers. Furthermore, the computing complexity of the proposed scheme is analyzed. It is more secure and efficient than that of discrete logarithm schemes.
作者 丁义 贾晓芸
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2009年第3期42-45,共4页 Journal of Beijing University of Posts and Telecommunications
关键词 链式验证签名 椭圆曲线 运算复杂度 chain verification signature elliptic curve computing complexity
  • 相关文献

参考文献8

  • 1Wang G, Bao F, Zhou J A, et al. Security remarks on a group signature scheme with member deletion[ C]//Proceeding of Information and Communications Security (ICICS'3). Berlin; Spring-verlag, 2003: 252-265. 被引量:1
  • 2谷利泽,李中献,杨义先.不需要可信任方的匿名代理签名方案[J].北京邮电大学学报,2005,28(1):48-50. 被引量:24
  • 3Chen T S, Hsiao T, Chen T L. An efficient threshold group signature scheme[ C]//IEEE Region 10 Conference on TENCON. [S.l ] : Springer-Verlag, 2004: 13-16. 被引量:1
  • 4Harn L. Digital signature with ( t, n ) shared verification based on discrete logarithms [ J ]. Electronics Letters, 1993, 29(24): 2094-2095. 被引量:1
  • 5Lee W B, Chang C C. Comment: digital signature with (t, n ) shared verification based on discrete logarithmes [J]. Electronics Letters, 1995, 31(3): 176-177. 被引量:1
  • 6Wang Mingwen, Zhu Qingxin, Qing Li. Shared verification signature for generalized subsets of receiving group[ C]//IEEE International Symposium on Communications and Information Technology. Beijing: BUPT Press, 2005: 1318-1321. 被引量:1
  • 7JIA Xiao-yun,LUO Shou-shan,YUAN Chao-wei.A New Signature Scheme with Shared Verification[J].The Journal of China Universities of Posts and Telecommunications,2006,13(2):66-69. 被引量:4
  • 8李康,陈刚,王海欣,白国强,陈弘毅.双核双域椭圆曲线密码处理器[J].清华大学学报(自然科学版),2008,48(10):1655-1658. 被引量:2

二级参考文献17

  • 1Diffie W, Hellman M E. New directions in cryptography [J]. IEEE Transactions on Information Theory, 1976, 22(5) : 644 - 654. 被引量:1
  • 2Koblitz N. Elliptic curve cryptosystems [J].Mathematics of Computations, 1987, 48; 203 - 209. 被引量:1
  • 3Miller V S. Use of elliptic curves in cryptography[C]// CRYPTO'85, LNCS. New York; Springer-Verlag, 1986, 218; 417-426. 被引量:1
  • 4Agnew G B, Mullin R C, Vanstone S A. An implementation of elliptic curve cryptosystems over[J]. IEEE J on Selected Areas in Communications, 1993, 11(5): 804-813. 被引量:1
  • 5CHEN Gang, BAI Gguoqiang, CHEN Hongyi. A new systolic architecture for modular division [J].IEEE Transactions on Computers, 2007, 56(2) : 282 - 286. 被引量:1
  • 6CHEN Gang, BAI Gguoqiang, CHEN Hongyi. A high-performance elliptic curve cryptographic processor for general curves over based on a systolic arithmetic unit [J].IEEE Transactions on Circuits and Systems Ⅱ-express Briefs, 2007, 54(5) : 412- 416. 被引量:1
  • 7Groβchadl J, Savas E. Instruction set extensions for fast arithmetic in finite fields GF(p) and GF(2^m) [C]// CHES 2004, LNCS. Springer-Verlag, 2004, 3156: 133-147. 被引量:1
  • 8Wolkerstorfer J. Dual field arithmetic unit for GF(p) and GF(2^m)[C]//CHES 2002, LNCS. Springer-Verlag, 2003, 2523: 500-514. 被引量:1
  • 9Itoh K, Takenaka M, Torii N, et al. Fast Implementation of Public-Key Cryptography on a DSP TMS320C6201 [C]//CHES'99,LNCS. Springer-Verlag, 1999, 1717: 61 - 72. 被引量:1
  • 10Mambo M, Usuda K, Okamoto E. Proxy signature:delegation of the power to sign messages[A]. EICE Trans Fundamentals[C]. 1996. 1338-1353. 被引量:1

共引文献27

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部