期刊文献+

有机电解液中钛基材表面TiO_2纳米管阵列生长机制的研究 被引量:12

Growth Mechanism of TiO_2 Nanotube Arrays on Titanium Substrate in Organic Electrolyte
下载PDF
导出
摘要 采用恒压阳极氧化法在有机电解液(NH4F/甘油、NH4F/乙二醇)中制备TiO2纳米管阵列,研究了阳极氧化电压、时间、电解液成分对纳米管阵列形貌、生长过程的影响,并提出了有机电解液中TiO2纳米管阵列的生长机制。研究表明:有机电解液中,获得纳米管阵列的电压范围更为宽泛,纳米管的生长时间也更长;在不同含水量的有机电解液中,可以制备出形貌不同的纳米管阵列;有机溶剂的高粘度、低含氧量提高了纳米管生长速度的同时控制着纳米管的腐蚀速度,因此在有机电解液中可以制备更大长径比的TiO2纳米管阵列;乙二醇电解液中纳米管的生长速度大于甘油电解液,并可制备出64μm的TiO2纳米管阵列。 TiO2 nanotube arrays were prepared by anodic oxidation at a constant potential in organic electrolytes (NH4F/glycerol, NH4F/ethylene glycol). The effects of anodic potential, anodic time and electrolyte composition on the nanotube morphology were investigated. A growth mechanism of TiO2 nanotube arrays in organic electrolytes was proposed. The results indicated that a much wider range of anodic voltage and longer anodic time for the preparation of TiO2 nanotube arrays were required in organic electrolytes. Furthermore, TiO2 nanotube arrays with different morphologies could be fabricated in organic electrolytes with different water contents. The large coefficient of viscosity and the low oxygen content of the organic electrolytes improved the growth velocity of the nanotubes, at the same time controlled their corrosion velocity, resulting in forming longer nanotubes in the electrolytes. Since the growing velocity of nanotube arrays in NH4F/ethylene glycol was bigger than that in NH4F/glycerol, longer nanotubes (64μm) could be obtained in NH4F/ethylene glycol.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2009年第6期967-971,共5页 Rare Metal Materials and Engineering
基金 江苏省自然科学基金资助项目(BK2004129) 航空基金资助项目(04H52059)
关键词 阳极氧化 TIO2纳米管阵列 生长机制 anodic oxidation TiO2 nanotube arrays growth mechanism
  • 相关文献

参考文献15

  • 1Zwilling Vet al. Surf Interface Anal[J], 1999, 27(7): 629 被引量:1
  • 2Gong D et al. J Mater Res [J], 2001, 16( 12): 3331 被引量:1
  • 3Zhao J L et al. SolidState Commu[J], 2005, 134(10): 705 被引量:1
  • 4Lai Y K et al. Applied Surface Sci[J], 2005, 252(4): 1101 被引量:1
  • 5Cai Q Y et al. JMater Res[J], 2005, 20(1): 230 被引量:1
  • 6Varghese O K et al. JMater Res[J], 2003, 18(1): 156 被引量:1
  • 7Paulose M et al. JPhys Chem B[J], 2006, 110(33): 16 179 被引量:1
  • 8Shankar K et al. Nanotechnology[J], 2007, 18(6): 065 707 被引量:1
  • 9Albu S Pet al. Phys Star Sol[J], 2007, 1(2): R65 被引量:1
  • 10Ruan C Met al. JPhys Chem B[J], 2005, 109(33): 15 754 被引量:1

同被引文献152

引证文献12

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部