期刊文献+

基于鲁棒ν-支持向量机的产品销售预测模型 被引量:3

Product sales forecasting model based on robust ν-support vector machine
下载PDF
导出
摘要 产品销售时序通常具有正态高斯分布、幅值较大、奇异点等混合噪音,为此,设计了一种鲁棒损失函数,得到一种新的支持向量机,即鲁棒ν-支持向量机。它可以有效地压制销售时序的多种噪音和奇异点,具有很强的鲁棒性,而且比标准ν-支持向量机具有更简洁的对偶优化问题。最后进行了汽车销售预测的实例分析,结果表明,基于鲁棒ν-支持向量机的预测模型是有效可行的。 To inhibit the normal Gaussian distributional noise, greater amplitude noise and singular points of product sales series, a robust loss function was designed, and a new support vector machine was obtained, named robust v - support vector machine (Rv-SVM). Rv-SVM, which was with strong robustness and simpler dual optimization problem than standard v -SVM, various types of noises and singular points of product sales series could he inhibited effectively. Then, Rv -SVM was applied to predict ear sales, and the results showed that the prediction model based on Rv-SVM was effective and feasible.
作者 吴奇 严洪森
出处 《计算机集成制造系统》 EI CSCD 北大核心 2009年第6期1081-1087,共7页 Computer Integrated Manufacturing Systems
基金 国家863计划资助项目(2007AA04Z112) 国家自然科学基金资助项目(60574062 50875046)~~
关键词 支持向量机 预测模型 鲁棒损失函数 混合噪音 support vector machine forecasting model robust loss function hybrid noises
  • 相关文献

参考文献17

  • 1BOX G E, JENKINS P G M. Time series analysis:forecasting and control[M]. 3rd ed. N.J. , USA:Prentice Hall PTR, 1994. 被引量:1
  • 2ENGLE R F. Combining competing forecasts of inflation using a bivariate ARCH model[J]. Journal of Economic Dynamics and Control, 1984,8(2) : 151-165. 被引量:1
  • 3KUO R J. Sales forecasting system based on fuzzy neural net work with initial weights generated by genetic algorithm[J]. European Journal of Operational Research, 2001, 129 ( 3 ) 496-517. 被引量:1
  • 4CHATFIELD C, YAR M. Holt-winters forecasting: some practical issues[J]. The Statistician,1988,37:129-140. 被引量:1
  • 5VAPNIK V. The nature of statistical leaming[M]. New York, N.Y. , USA : Springer, 1995. 被引量:1
  • 6CAO J R, CAI A N. A robust shot transition detection method based on support vector machine in compressed domain[J]. Pattern Recognition Letters,2007,28(12) : 1534-1540. 被引量:1
  • 7WIDODOA A, YANG B S. Support vector machine in machine condition monitoring and fault diagnosis[J]. Mechanical Systems and Signal Processing,2007,21(6):2560-2574. 被引量:1
  • 8ROSSI F, VILLAB N. Support vector machine for functional data classification [ J ]. Neurocomputing, 2006, 69 ( 7/9 ) : 730-742. 被引量:1
  • 9赵宇,李兵,李秀,刘文煌,任守榘.基于改进支持向量机的客户流失分析研究[J].计算机集成制造系统,2007,13(1):202-207. 被引量:41
  • 10李辉,李向阳,王颜新.基于多支持向量机系统的供应链伙伴关系协同预警框架[J].计算机集成制造系统,2006,12(5):753-758. 被引量:5

二级参考文献40

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2李建平,徐伟宣,刘京礼,石勇.消费者信用评估中支持向量机方法研究[J].系统工程,2004,22(10):35-39. 被引量:22
  • 3杨树莲.数据挖掘在电信行业客户流失分析中的应用[J].计算机与现代化,2005(2):109-111. 被引量:8
  • 4RING P S, VAN DE VEN A H. Developmental processes of cooperative inter-organizational relationships[J]. Academy of Management Review,1994,19(1) :90-118. 被引量:1
  • 5JOHNSTON D A,MCCUTCHEON D M,STUART F I,et al.Effects of supplier trust on performance of cooperative supplier relationships[J]. Journal of Operations Management, 2004,22(1):23-38. 被引量:1
  • 6SMITH J B, BARCLAY D W. The effects of organizational differences and trust on the effectiveness of selling partner relationships[J]. Journal of Marketing, 1997,61 (1): 3- 21. 被引量:1
  • 7CAO L J. Support vector machines experts for time series forecasting[J]. Neurocomputing, 2003, (51): 321 - 339. 被引量:1
  • 8POGGIO T,RIFKIN R,MUKHERJEE S,et al. General conditions for predictivity in learning theory[J]. Nature, 2004,428(25) :419-422. 被引量:1
  • 9VAPNIK V N. The nature of statistical learning theory[M].New York, NY, USA : Springer, 2000. 被引量:1
  • 10CRISTIANINI N, SHAVE-TAYLOR J. An introduction to support vector machines [M]. New York, NY, USA: Cambridge, 2000. 被引量:1

共引文献58

同被引文献27

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部