期刊文献+

吸气方法在高层建筑风荷载减阻中的应用 被引量:2

APPLICATION OF THE SUCTION METHOD TO REDUCE THE WIND LOAD ON HIGH-RISE BUILDING
原文传递
导出
摘要 采用数值模拟方法研究了吸气控制下高层建筑模型的减阻性能,分析了吸气位置、吸气角、开孔宽度和吸气流量(系数)等参数对减阻的影响规律。结果表明:当外界来流风速不变时,吸气流量越大,减阻效果越好,该文吸气角为15o、吸气流量系数为―0.0686时模型的阻力折减系数CDR达到0.523;吸气角和开孔大小对CDR的影响较小。当吸气控制沿高度变化时,各吸气段的顺风向风压减阻效率ηDR和弯矩减阻效率ηMR均大于1.0,其数值随高度的增加先增大后减小,最大值出现在0.425m处。最后给出了风压折减系数关于吸气流量系数和吸气高度的经验公式。 As the drag force of the bluffbody is greatly increased due to the separation flow, the suction method is proposed to investigate the performance of the Drag Reduction (DR) to a high-rise building via numerical method. The effects of the suction position, suction angle, slot size and flux coefficient on the DR are analyzed. The results show that the DR is more significant with larger flux coefficient, and the Coefficient of the Drag Reduction (CDR) of the model under the flux coefficient of-0.0686 and the suction angle of 15° arrives at 0.523, however, the function of the suction angle and slot size is little for DR. As the suction is moving along the vertical direction of the model, the results show that the efficiencies of the Drag Reduction and Moment Reduction of any suction section are all greater than 1.0. When the height is increased, the efficiencies increase firstly and decrease afterwards, and the greatest values happen at the height of 0.425 m. Lastly, the formulae are regressed for the Coefficient of Pressure Reduction with regard to the flux coefficient and the suction height.
出处 《工程力学》 EI CSCD 北大核心 2009年第A01期51-56,共6页 Engineering Mechanics
关键词 高层建筑 风荷载减阻 数值模拟 吸气控制 风压折减系数 high-rise building reduction of wind load numerical simulation suction control coefficient of pressure reduction
  • 相关文献

参考文献10

  • 1侯晖昌著..减阻力学[M].北京:科学出版社,1987:389.
  • 2史里希廷H.边界层理论[M].徐燕侯,徐立功,译.北京:科学出版社,1988. 被引量:6
  • 3张耀春,秦云,王春刚.洞口设置对高层建筑静力风荷载的影响研究[J].建筑结构学报,2004,25(4):112-117. 被引量:29
  • 4顾明,王凤元,全涌,陈伟,张锋.超高层建筑风荷载的试验研究[J].建筑结构学报,2000,21(4):48-54. 被引量:21
  • 5E1-Samni O A, Chun H H, Yoon H S. Drag reduction of turbulent flow over thin rectangular riblets [J]. International Journal of Engineering Science, 2007, 45: 436--454. 被引量:1
  • 6Collis S S, Joslin R D, Seifert A. Issues in active flow control: Theory, control, simulation, and experiment [J]. Progress in Aerospace Sciences, 2004, 40: 237--289. 被引量:1
  • 7Chen Zhihua, Aubry N. Active control of cylinder wake [J]. Communications in Nonlinear Science and Numerical Simulation, 2005, 10: 205--216. 被引量:1
  • 8Taegee M, Haecheon C. Combined effects of polymers and active blowing/suction on drag reduction [J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 131: 53 -- 58. 被引量:1
  • 9Versteeg H K, Malalasekera W. An introduction to computational fluid dynamics: The finite volume method [M]. London: Longman Scientific and Technical, 1995. 被引量:1
  • 10Uruba V, Jonas J, Mazur O. Control of a channel-flow behind a back forward-facing step by suction/blowing [J]. International Journal of Heat and Fluid Flow, 2007, 28: 665--672. 被引量:1

二级参考文献6

  • 1叶丰,第九届全国结构风效应学术会议论文集,1999年,10页 被引量:1
  • 2Gu M,he. 10th International Conf. On Wind Eng.,1999年,1497页 被引量:1
  • 3KIKITSU Hitomitsu, OKADA Hisashi. Open passage design of tall buildings for reducing aerodynamics response[A].Wind Engineering into the 21st Century[C]. Larose, Larose & Livesey Press, 1999:667 - 672. 被引量:1
  • 4LETCHFORD C W. Wind loads on rectangular signboards and hoardings[J]. Journal of wind Engineering and Industrial Aerodynamics. 2001, 89:135 - 151. 被引量:1
  • 5ROBERTSON A P, HOXEY R P, RICHARDS P J. Design code, full-scale and numerical data for wind loads on freestanding walls[J]. Journal of wind Engineering and Industrial Aerodynamics. 1995, 57:203 - 214. 被引量:1
  • 6AHLBORN Boye, SETO Mae L, NOACK Bernd R. On drag, Strouhal number and vortex-street structure[J]. Fluid Dynamics Research, 2002,30: 379 - 399. 被引量:1

共引文献49

同被引文献15

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部