期刊文献+

带ABC底面的共形完全匹配层按层积分算法

Layer-Oriented Integration Arithmetic of Conformal PML with Vector ABC Undersurface
下载PDF
导出
摘要 本文构造了一种共形完全匹配层(Conformal Perfectly Latched Layer,CPML)矢量单元按层积分算法,将多层单元积分运算叠加到一层单元中进行,即保留了多层单元的几何和材料信息,又减少了计算规模;为了进一步增强吸收,减少底面反射,应用矢量ABC(Absorbing Boundary Condition,ABC)吸收边界作为CPML底面.数值算例表明,这种按层积分CPML结合矢量ABC吸收边界的方法,吸收效果好,计算量小,效率高;具有良好的应用前景. Confolmal perfectly matched layer (CPML) is multilayer anisotropic absorbing media domain as an efficient artitidal truncating boundary condition. To decrease computing scale of CPML, we propose layer-oriented integration arithmetic. In the arithmetic, integration of mttltilayer is substituted by integration of monolayer along the nolmal direction for decreasing quantity of elements, and relative dielectric constant and permeability may be considered as constant in monolayer because monolayer of CPML is very thin. To reduce reflection of CPML undersurface, we employ vector absorbing boundary condition (ABC) as undersurface that can absorb scattering wave well under small disturbance of scattering field. The contents of this paper include the layer-oriented integration arithmetic of CPML with vector ABC undersurface,algorithmic implementation and numerical examples, which demonstrate both the applicability and effectiveness of the arithmetic.
作者 张永杰 孙秦
出处 《电子学报》 EI CAS CSCD 北大核心 2009年第6期1313-1317,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.10477018) 西北工业大学创新基金(No.W016143)
关键词 共形完全匹配层 按层积分算法 矢量ABC吸收边界 conformal PML layer-oriented integration arithmetic vector absorbing boundary condition
  • 相关文献

参考文献2

二级参考文献14

  • 1Jin J M. The finite element method in electromagnetics [ M ]. Second Edition, New York:Wiley,2002. 被引量:1
  • 2Silvester P P, Pelosi G. Finite elements for wave electromagnetics [ M ] . New York. IEEE Press, 1994. 被引量:1
  • 3Webb J P. Edge elements and what they can do for you [J]. IEEE Trans Magn, 1993,29(1) :1460- 1465. 被引量:1
  • 4Sun D, Manges J, Yuan X, Cendes Z. Spurious modes in finite-element methods [J]. IEEE Antennas Propagat Mag, 1995,37( 10):12 - 24. 被引量:1
  • 5Cendes Z J. Vector finite elements for electromagnetic field computation [J]. IEEE Trans Magn, 1991,27(9) :3958- 3966. 被引量:1
  • 6Wang J S, Ida N. Curvilinear, and higher order "edge" finite elements in electromagnetic field computation [J]. IEEE Trans Magn,1993,29(3) : 1491 - 1493. 被引量:1
  • 7Graglia R D, Wilton D R, Peterson A F. Higher order interpolatory vector bases for computational electromagnetics [J]. IEEE Trans Antennas Propagat, 1997,45 (3) : 329-342. 被引量:1
  • 8Webb J P. Hierarchical vector basis functions of arbitrary order for triangular and tetrahedral finite elements [J]. IEEE Trans Antennas Propagat, 1999,47(8) : 1244 - 1253. 被引量:1
  • 9Liu J, Jin J M. A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering and radiation problems[J]. IEEE Trans Antennas Propagat, 2001,49(2) :1794- 1806. 被引量:1
  • 10Zienkiewicz O C, Taylor R L. The finite element method[M]. Fifth Edition, Butterworth-Heinemann,2000.190- 198. 被引量:1

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部