期刊文献+

基于K-近邻法及移动agent技术的垃圾邮件检测系统研究 被引量:3

Research of spam detection system based on KNN and mobile agent
下载PDF
导出
摘要 为了解决日益严重的垃圾邮件问题,设计了一个新型的基于K-近邻法及移动agent技术的垃圾邮件检测系统。简单介绍了K-近邻法及移动agent技术,详细阐述了基于K-近邻法及移动agent技术的垃圾邮件检测系统的体系结构、工作流程和关键技术。实验结果表明,与同类系统相比,该系统执行速度提高了,对网络稳定性的要求比较低,能够有效阻止垃圾邮件的传播。 For solving the growing problem of spam, designed and implemented a new spam detection system based on mobile agent, introduced the relevant technology and the structure of this system, presented some key technology in the process of implementation were presented. By experimental simulations, the test result validated the purpose of this system for spam detecting.
出处 《计算机应用研究》 CSCD 北大核心 2009年第7期2630-2632,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60703068)
关键词 K-近邻法 移动代理 垃圾邮件 垃圾邮件检测 K-nearest neighbor(KNN) mobile agent spam spam detection
  • 相关文献

参考文献8

二级参考文献76

  • 1李渝勤,孙丽华.基于规则的自动分类在文本分类中的应用[J].中文信息学报,2004,18(4):9-14. 被引量:20
  • 2Salton G,Lesk M E.Computer Evaluation of Index and Text Processing. Association for Computing Machinery,1968,15(1). 被引量:1
  • 3Maron M E. On Relevance,Probabilistic Indexing and Information Retrieval. Journal of the ACM,1960,7(3). 被引量:1
  • 4Lewis D D. Feature Selection and Feature Extraction for Text Categorization. In Proceedings of Speech and Natural Language Workshop. Defense Advanced Research Projects Agency,Morgan Kaufmann,1992-02:212-217. 被引量:1
  • 5Yang Yiming,Liu Xin. A Re-examination of Text Categorization Methods. Proceedings of ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR),1999:42-49. 被引量:1
  • 6M. DeSouza, J. Fitzgerald, C. Kempand G. Truong, A Decision Tree based Spam Filtering Agent[EB] . from http:∥www. cs. mu. oz. au/481/2001- projects/gntr/index. html, 2001. 被引量:1
  • 7N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm[J]. Machine Learning, 2(4) :285- 318, 1988[J]. 被引量:1
  • 8R. Krishnamurthy and C. Orasan, A corpus-based investigation of junk emails[A]. In: Proceedings of Language Resources and Evaluation Conference (LREC 2002)[C]. Las Palmas de Gran Canaria, Spain, pp. 1773- 1780,May 2002. 被引量:1
  • 9M. Sahami, S. Dumais, D. Heckerman and E. Horvitz, A Bayesian approach to filtering junk e-mail[A]. In:Proc. of AAAI Workshop on Learning for Text Categorization[C]. pp. 55-62, 1998. 被引量:1
  • 10W. Cohen, Fast effective rule induction[A]. In: Machine Learning Proceedings of the Twelfth International Conference[C]. Lake Taho, California, Mongan Kanfmann, pp. 115-123, 1995. 被引量:1

共引文献260

同被引文献25

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部