期刊文献+

改进的进化规划算法及其在采购方案优化中的应用 被引量:2

Improved algorithm of evolutionary programming and its application research on optimization of ordering plan
原文传递
导出
摘要 采用高斯变异算子的进化规划算法存在早熟现象,根本原因是高斯变异产生的变异量较小,导致个体分量乃至整个个体不发生变异.文中从变异算子、个体分量值的计算和搜索空间三个方面改进了进化规划算法.设计了能产生较大变异量的离散余弦变换算子,并且采用动态比例变异法动态调整个体中的每个分量,多个体竞争策略扩大了算法的搜索空间.针对复杂采购业务模型,运用改进的进化规划算法求解.实验证明,改进的算法在求解精度上优于采用高斯变异和随机变异的进化规划算法,解决了进化规划算法的早熟问题. Evolutionary programming with Gauss mutation operator has premature convergence. The root causes is mutation value produced by Gauss mutation is so smaller that every variable in individual and individual itself may not be mutation. This paper improves evolutionary programming in three aspects of mutation operator, individual opponent value and search space. At first, Gauss mutation operator is replaced with the improved discrete cosine transformation operator which can produce more big mutation value; the formula of dynamic and proportional mutation designed can adjust every component value dynamically in individual, and multi-individual competition strategy enlarges its search space. Fhrthermore, an ordering model is created of complicate ordering business, and it is solved by using algorithm of improved evolutionary programming in Matlab. The simulated experiment result indicates that this improved algorithm is superior to evolutionary programming with Gauss mutation operator and random mutation operator in solution precision. This research has solved problem of premature convergence in standard evolutionary programming.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2009年第6期172-177,共6页 Systems Engineering-Theory & Practice
基金 湖北省自然科学基金(2007ABA003) 湖北省教育厅科学技术研究重点项目(D200711006)
关键词 进化规划 离散余弦变换 动态比例变异 采购方案优化 evolutionary programming discrete cosine transform dynamic proportional mutation orderingplan optimization
  • 相关文献

参考文献6

二级参考文献44

  • 1周殊,潘炜,罗斌,张伟利,丁莹.一种基于粒子群优化方法的改进量子遗传算法及应用[J].电子学报,2006,34(5):897-901. 被引量:33
  • 2Yao X, Liu Y. A new evolutionary system for evolving artificial neural networks[J]. IEEE Transactions on Neural Networks,1997,8(3):694~713. 被引量:1
  • 3Sebald A V, Schlenzig J. Minimax design of neural net controllers for highly uncertain plants[J]. IEEE Transactions on Neural Networks, 1994,5(1):73~82. 被引量:1
  • 4Bornholdt S, Graundenz D. General asymmetric neural networks and structure design by genetic algorithms[J]. IEEE Transactions on Neural Networks,1992,5(5):327~334. 被引量:1
  • 5Fogel D B. Applying evolutionary programming to selected traveling salesman problem[J]. Cybernetics and System,1993,24(1):27~36. 被引量:1
  • 6Yao X, Liu Y, Lin G. Evolutionary programming made faster[J]. IEEE Transactions on Evolutionary Computation,1999,3(2):82~102. 被引量:1
  • 7Sachffer J D, Caruana R, Eshelman L J, et al. A study of control parameters affection online performance of genetic algorithms for function optimization[A]. Proceedings of the 3th International Conference on Genetic Algorithm[C].1991.51~60. 被引量:1
  • 8Banzhaf W, Beckman F H. Evolution and biocomputaion[M]. Berlin, New York Springer, 1995. 被引量:1
  • 9De Jong K. An analysis of the behavior of a class of genetic adaptive systems[D]. University of Michigan,1975. 被引量:1
  • 10Gordon V S, Whitely D. Serial and parallel genetic algorithms as function optimizers[A]. Proceedings of the 5th International Conference on Genetic Algorithm[C].1993.177~183. 被引量:1

共引文献82

同被引文献25

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部