期刊文献+

余单子的类群元及其性质 被引量:1

Group-like Element of Comonad and Its Properties
下载PDF
导出
摘要 根据A-上环(A是代数)的类群元的定义及有关性质,本文给出T-余单子(T是单子)的类群元的定义,研究此类群元的存在条件,并给出类群元与缠绕结构之间的相关性质. According to the definition and some properties of the group - like element of A - eorings ( A is an algebra), firstly the definition of the group - like element of T - comonad is introduced, then the existence of group - like element is stud- ied,and lastly some properties between group like element and entwining structure of monad and comonad are given.
作者 代瑞香
出处 《长春师范学院学报(自然科学版)》 2009年第3期11-12,共2页 Journal of Changchun Teachers College
基金 石河子大学高层次人才科研启动资金专项(RCZX200735)
关键词 余单子 类群元 缠绕模 eomonad group - like element entwined module
  • 相关文献

参考文献5

二级参考文献16

  • 1Brzezinski T., Majid S., Coalgebra bundles, Comm. Math. Phys., 1998, 191(2): 467-492. 被引量:1
  • 2Caenepeel S., Militaru G., Zhu S. L., Probenius and separable functors for generalized module categories and nonlinear equations, Vol.1787, Berlin, New York: Springer, 2002. 被引量:1
  • 3Beck J., Distributive laws, Lect. Notes Math., 1969,80:119-140. 被引量:1
  • 4Mesablishvili B., Entwining structures in monoidal categories, Journal of Algebra, 2008, 319(6): 2496-2517. 被引量:1
  • 5Bruguieres A., Virelizier A., Hopf monads, Adv. Math., 2007, 215(2): 679-733. 被引量:1
  • 6GSmez-Torrecillas J., Comonad and Galois corings, Applied Categorical Structures, 2006, 14(5/6): 579-598. 被引量:1
  • 7T Brzezinski, S Majid. Coalgebra bundles[J]. Comm Math Phys, 1998, ( 191) :467-492 被引量:1
  • 8Y Bespalov, T Kerler,V Lyubashenko, et al. Integrals for braided hopf algebras [J]. J Pure Appl Algebra, 2000; 148 (2): 113-164. 被引量:1
  • 9J Beck. Distributive laws[A]. Eckmannn B. Seminar on Triples and Categorical Hommlogy Theory[ C] .Springer Lecture Notes Mathematics, 1969,80:119-140. 被引量:1
  • 10T Brzezinski. The Structure of Corings: Induction Functors, Maschke-Type Theorem, and Frobenius and Galois-type Properties[ J]. Algebras Represent Theory, 2002, (5) : 389-410. 被引量:1

共引文献7

同被引文献11

  • 1Mac Lane S.Homologie des anneaux et des modules[M].Louvain:Colloque de topologie algebrique,1956. 被引量:1
  • 2Godement R.Theorie des faisceaux[M].Paris:Hermann,1958. 被引量:1
  • 3Huber P J.Homotopy theory in general categories[J].Math Ann,1961(144):361-385. 被引量:1
  • 4Barr M,Beck J.Acyclic models and triples[M].New York:Springer-Heidelberg,1966. 被引量:1
  • 5Blackwell R,Kelly G M,Power A J.Two-dimensional monad theory[J].J Pure Appl Algebra,1989,59:1-41. 被引量:1
  • 6Moerdijk I.Monads on tensor categories[J].J Pure Appl Algebra,2002,(168):189-208. 被引量:1
  • 7Bruguieres A,Virelizier A.Hopf Monad[J].Adv Math,2007,215(2):679-733. 被引量:1
  • 8Gomez-Torrecillas J.Comonad and Galois corings[J].Applied categorical Structure,2006,14 (5/6):579-598. 被引量:1
  • 9Brzezinski T,Wisbauer R.Corings and Comodules[M].London:Cambrige University Press,2003. 被引量:1
  • 10代瑞香,刘超,王顶国.缠绕结构与缠绕模[J].石河子大学学报(自然科学版),2008,26(1):106-109. 被引量:4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部